Contents

1 GT::Analyzers

Provides some functions that will be used by all analyzer modules.

DESCRIPTION
MANAGE A REPOSITORY OF INDICATORS

GT::Analyzers::get_registered_object ($name) ;
GT::Analyzers::register_object ($name, $object);
GT::Analyzers::get_or_register_object($name, $object);
GT::Analyzers: :manage_object (\GNAMES, $object, $class, $args, $key);

DEFAULT FUNCTIONS FOR ANALYZERS
GT::Analyzers: :Module->new($args, $key, $func)

Create a new analyzer with the given arguments. $key and $func are
optional, they are useful for indicators which can use non-usual input
streams.

$analyzers->initialize()

Default method that does nothing.

GT::Analyzers::Accumulate - Accumulates the Days of argl

2 DESCRIPTION

Accumulates the values of the array that is given as argl.
This means if the array consists of the values (1,2,3,4) the result is (1,3,6,10).

Parameters

First argument: Array reference to be accumulated

Return

Returns an array, not considering first and last parameter.

GT::Analyzers::Avg - Calculates the Average of argl
3 DESCRIPTION
Calculates the Average of argl

Parameters

First argument: Array reference to be averaged

Return

Returns an array, not considering first and last parameter.

GT::Analyzers::AvgCosts - Average Costs per trade

4 DESCRIPTION

The mean costs of the portfolio

GT::Analyzers::AvgGain - Average Gain per trade
5 DESCRIPTION
This analyzer calculates the mean of the gains.

Parameters

First parameter: Cumulated Gain
Second parameter: Number of Gaing

GT::Analyzers::Avgloss - Average Loss per trade
6 DESCRIPTION
This analyzer calculates the mean of the losses.

Parameters

First parameter: Cumulated Loss
Second parameter: Number of Losses

GT::Analyzers::AvgNZ - Calculates the Average

7 DESCRIPTION

Calculates the Average of Argl, but only of the days where Argl is non-zero.

Parameters

First argument: Array reference to be averaged

GT::Analyzers::AvgPerformance - Average Performance per trade
8 DESCRIPTION
The mean performance of the portfolio

Parameters

none

GT::Analyzers::AvgCosts - Average Costs per trade

9 DESCRIPTION

The mean performance of the portfolio

Parameters

none

10

GT::Analyzers: :BuyPrice - The price for which the stock was bought

10 DESCRIPTION

The price for which the stock was bought

Parameters

none

11

GT::Analyzers::CloseDate - The date where the position was closed

11 DESCRIPTION

The date where the position was closed.

Parameters

none

12

GT::Analyzers::ClosePricce - The price on the closing date
12 DESCRIPTION
The price on the closing date.

Parameters

none

13

GT::Analyzers: :CompleteCash - Returns the cash-part of the evaluation-history

13 DESCRIPTION

Returns the cash-part of the evaluation-history

Parameters

none

14

GT::Analyzers: :CompleteDate - Returns all dates of the evaulation history

14 DESCRIPTION

Returns all dates of the evaulation history

Parameters

none

15

GT::Analyzers: :CompleteGain - The gain of the evaluation history

15 DESCRIPTION

The gain of the evaluation history

Parameters

none

16

GT::Analyzers::Complete Value - The values of the portfolio history

16 DESCRIPTION

The values of the portfolio history

Parameters

none

17

GT::Analyzers::Consec - Maximum of consecutive nonzero-values
17 DESCRIPTION
Calculates the Average of Argl

Parameters

First argument: Array reference to be averaged

18

GT::Analyzers::Costs - Costs per trade
18 DESCRIPTION
The costs per trade.

Parameters

none

19

GT::Analyzers: :CumGain - Cummulative Gain
19 DESCRIPTION
Cummulative Gain

Parameters

none

20

GT::Analyzers: :CumLoss - Cummulative Loss
20 DESCRIPTION
Cummulative Loss

Parameters

none

21

GT::Analyzers: :DrwaDown - The Drawdown of the portfolio

21 DESCRIPTION

The Drawdown of the portfolio: The maximum Drawdown can be calculated
as: {A:Min {A:DrawDown}}

Parameters
NetGain
Initial Sum of Cash

Maximum net gain

22

GT::Analyzers: :Duration - Duration of the trades
22 DESCRIPTION
Duration of the trades.

Parameters

none

23

GT::Analyzers::First - First value of the arrray #argl
23 DESCRIPTION
First value of the arrray #argl

Parameters

First argument: Array reference

24

GT::Analyzers::Gain - Gain of each trade
24 DESCRIPTION
Gain of each trade

Parameters

none

25

GT::Analyzers::GrossGain - The gross gain
25 DESCRIPTION
The gross gain

Parameters

none

26

GT::Analyzers::InitSum - The initial amount of cash
26 DESCRIPTION
The initial amount of cash

Parameters

none

27

GT::Analyzers::AvgCosts - Average Costs per trade

27 DESCRIPTION

The mean performance of the portfolio

Parameters

none

28

GT::Analyzers::AvgCosts - Average Costs per trade

28 DESCRIPTION

The mean performance of the portfolio

Parameters

none

29

GT::Analyzers::IsLoss - Boolean value: True if it is a loosing trade

29 DESCRIPTION

Boolean value: True if it is a loosing trade

Parameters

none

30

GT::Analyzers::Last - Last value of array #argl
30 DESCRIPTION
Last value of array #argl

Parameters

First argument: Array reference

31

GT::Analyzers::Long - Boolean value:

31 DESCRIPTION

Boolean value: True if trade is long

Parameters

none

32

True if trade is long

GT::Analyzers::Losses - The losses of the trades

32 DESCRIPTION

The losses of the trades

Parameters

none

33

GT::Analyzers::Max - Calculates the Maximum of Argl
33 DESCRIPTION
Calculates the Maximum of Argl

Parameters

First argument: Array reference

34

GT::Analyzers: :MeanPerformace - The Mean Performance of a Portfolio
34 DESCRIPTION
The mean performance of the portfolio

Parameters

none

35

GT::Analyzers::Min - Calculates the Minimum of Argl
35 DESCRIPTION
Calculates the Minimum of Argl

Parameters

First argument: Array reference

36

GT::Analyzers::NB - Number of trades
36 DESCRIPTION
Number of trades

Parameters

none

37

GT::Analyzers::NetGain - The net gain of the positions

37 DESCRIPTION

The net gain of the positions

Parameters

none

38

GT::Analyzers::AvgCosts - Average Costs per trade

38 DESCRIPTION

The mean performance of the portfolio

Parameters

none

39

GT::Analyzers: :0OpenDate - The date where the trade was opened

39 DESCRIPTION

The date where the trade was opened

Parameters

none

40

GT: :Analyzers: :0OpenPrice - The price at the opening
40 DESCRIPTION
The price at the opening

Parameters

none

41

GT::Analyzers: :PerShare - Normalizes a value per share of a position
41 DESCRIPTION
Normalizes a value per share of a position

Parameters

First argument: Array reference to be normalized

42

GT::Analyzers: :Performance - The Performance of the trades
42 DESCRIPTION
The Performance of the trades

Parameters

The net gain in percent

The price ath the opening of a trade

43

GT: :Analyzers: :Process

43 DESCRIPTION

This module offes all those functions that are needed by the analyzers shell to
interactively analyze and test portfolios.

FUNCTIONS
GT: :Analyzers: :Process->new()

GT::Analyzers: :Process->parse($cmd)
This function parses the command $cmd. If the shell is set in expert mod
it tries first to map $cmd to an internat command and otherwise evaluates
it using eval.

GT: :Analyzers: :Process->bye()
Exits the program after asking if the history should be stored.

GT::Analyzers: :Process->set([$key])

Set a configuration-parameter. If key is not given, the list of parameters
is given. The variable key consits of the real key and the value separated
by a space. If you want to set an array, you can either use key[x] to teh
xth element or +key to add the value to the array.

GT: :Analyzers: :Process->set_code($code)

Set the code and do the necessary initialization-stuff.
GT::Analyzers: :Process->1oad($sys, $dir, $code)
Loads $sys from $dir and $code (optional).

GT::Analyzers: :Process->save($sys, $dir)

Saves the portfolio with name $sys to directory $dir.

GT::Analyzers: :Process->1list($dir)

Lists the systems in directory $dir.

GT: :Analyzers: :Process->btest ()
start the backtest.

GT::Analyzers: :Process->calc($args)

Calculates the expression given as argument(s).

GT::Analyzers: :Process->calc_array($argl, $arg2, ...)
Calculates each array and prints out/returns a list.

The arry should have the same length.

44

GT:

GT:

GT:

GT:

GT:

GT:

GT:

GT:

GT:

GT:

GT:

:Analyzers: :Process->p($arg)

Prints out the string $arg and replaces the variable elements

:Analyzers: :Process->help()

Print the help screen

:Analyzers: :Process->1icence()

Print the licence

:Analyzers: :Process->1license()

Prints the license

:Analyzers: :Process->disconnect ()

Disconnect from database.

:Analyzers: :Process->info()

Prints a small information shown at the start of anashell.

:Analyzers: :Process->pg_hist ()

Uncomment this function to plot histograms with pgplot.

:Analyzers: :Process->r_hist($array)

Plots a histogram using R (www.r-project.org) of the values of $array.

:Analyzers: :Process->r_bar($array)

Generates a barplot in R by using the values of $array

:Analyzers: :Process->r_corr($arrl, $arr2)

Plots the correlation of $arrl and $arr2 in R.

:Analyzers: :Process->report($file)

Prints the report of the portfolio using $file as template.

45

GT: :Analyzers: :Profitfactor - Calculates the profitfactor

44 DESCRIPTION

Calculate the Profitfactor by dividing the sum of the gains by the sum of the
losses.

Parameters

Sum of the Gains

Sum of the Lossse

46

GT: :Analyzers: :Profitfactor - Calculates the profitfactor

45 DESCRIPTION

Calculate the Profitfactor by dividing the average of the gains by the average
of the losses.

Parameters

Average of the Gains

Average of the Lossse

47

GT::Analyzers::Quantity - The quantitiy of shares
46 DESCRIPTION
The quantitiy of shares

Parameters

none

48

GT::Analyzers::AvgCosts - Average Costs per trade
47 DESCRIPTION
The mean performance of the portfolio

Parameters

none

49

48 GT::Analyzers Report

DESCRIPTION

This module is mainly a wrapper to process a report file with HTML::Mason.
This module needs HTML::Mason to display the reports and Cwd and
File::Spec to find out the actual path.

a0

GT: :Analyzers::RiskReturn - Caluclates the Risk-/Return-Ratio

49 DESCRIPTION

Caluclates the Risk-/Return-Ratio

Parameters

First argument: The portfolio-history.

o1

GT::Analyzers::SellPrice - The price for which the position was sold

50 DESCRIPTION

The price for which the position was sold

Parameters

none

92

GT::Analyzers::Short - True if it is a short trade
51 DESCRIPTION
True if it is a short trade

Parameters

none

33

GT::Analyzers::StdTime - Normalizes the value #argl per year
52 DESCRIPTION
Normalizes the value #argl per year

Parameters

First argument: Value to be normalizes

o4

GT::Analyzers::Sum - Summarizes the array #argl
53 DESCRIPTION
Summarizes the array #argl

Parameters

First argument: Array reference to be summarized

39

GT::Analyzers: :SumPerformance - The Sum of the Performance
54 DESCRIPTION
The Sum of the Performance

Parameters

Sum of the Gains

Initial Sum

96

GT::Analyzers::Type - String: long if long and short if short
55 DESCRIPTION
String: long if long and short if short

Parameters

none

37

GT::Analyzers::WinRatio - Calcuates the WinRatio
56 DESCRIPTION
Calcuates the WinRatio

Parameters

Number of Gains

Number of Losses

98

57 GT::ArgsTree

Represent the arguments of calculation objects (indics/signals/systems)

DESCRIPTION

Each calculation object can be parameterized with arguments. But those argu-
ments can themselves be calculation objects. This is represented by a complex
syntax that this module can understand and use to create a tree of arguments.

SYNTAX

The argument list is a space separated list of arguments. However when the
argument is not a readable value but a computable one, it should be given with
a different syntax :

{ I::Indicator <indic_arg_list> }

AVAILABLE FUNCTIONS

GT: :ArgsTree->new(Q@args)
Create an ArgsTree object for the given list of arguments. Instead of a
list you can give a string representation of all the arguments.
$at->add_args(Qargs)

Process the list of arguments and adds them to the arguments tree.

$at->create_objects()

Creates the required objects to compute the various arguments.
$at->is_constant ($arg_number)

$at->is_constant ()

Return true if the corresponding argument is of constant value (ie it
doesn’t have to be computed each time). If no argument is given, then
return true if all arguments are constant.

The first argument is numbered "1" (and not "0").
$at->get_arg_values($calc, $day)

$at->get_arg_values($calc, $day, $n)

Return the (computed) value of the indicated argument. Returns the list
of values of all arguments if no parameter is given.

The first argument is numbered "1" (and not "0").

99

$at->get_arg_constant ($n)
Return the constant value of the given argument. Make sure to check that
the argument is constant before otherwise it will die.
$at->get_arg_object($n)

Return the associated object of the given argument. The object is some-
thing able to compute the value of the argument. Make sure the argument
is not a constant otherwise it will die.

$at->get_arg_names()

$at->get_arg_names($n)

Return the name the indicated argument. Returns the list of names of all
arguments if no parameter is given.

The first argument is numbered "1" (and not "0").
$at->get_nb_args()

Return the number of arguments available.
my ($full_name, @args) = GT::ArgsTree::parse_args($args)

Parse the arguments in $args and return the parsed content in the form
of two arrays (list of arguments).

GT::ArgsTree: :args_to_ascii(@args)

Return the ascii representation of all the parameters described in @args.

$args->prepare($calc, $day)

Precalculate all possible values for the given day.

$args->prepare_interval($calc, $first, $last)

Precalculate all possible values for the given interval.

60

58 GT::BackTest

Backtest trading systems in different conditions

OPTIONS

Analysis::ReferenceTimeFrame

You can set this configuration item to day, week, month or year. There
will be a standardized performance result based on that timeframe. By
default the value is "year".

DESCRIPTION

backtest_single($pf_man, $sys_man, $broker, $calc, $first, $last)

Backtest the a system using the given portfolio manager (ie set of money
management rules) on the data contained by $calc during the period $first
to $last (indices used by the calculator).

GT: :BackTest::combinate_system_and_manager (\@systems, \Omanagers)

Returns a hash that can be used by backtest combinations

GT: :BackTest: :create_managers_with_filters(\@filters)

Create all possible managers with all the possible combinations of filters.

61

59 GT::BackTest::Spool

This modules provides some functions to manage a backtest directory.

$spool = GT::BackTest::Spool->new($data directory);
Create and initialize a BackTest::Spool object with a specific directory, where
backtest data are stored.

$spool->use cache(0|1)

Tell if data are cached before being written. Default to 1. In that case you have
to call $spool->sync from time to time to write data on the disk.
$spool->update index()

Force an update of the index data. Use that if a long time has elapsed since the
read and the index may have been updated.
$spool->add alias name($sysname, $alias);

This function will link an alias and a system name.

$spool->get alias name($sysname)

Return the alias name of the system if it exists.

$spool->add results($sysname, $code, $stats, $portfolio,
[$set]);

This function will add new data or update old ones in the spooler.

$spool->sync()
Write the cache on disk.

$hash = $spool->list available data([$set]);

This function will return a list of systems/codes available. $hash->{$sysname}
= [list of codes |;

$spool->get stats($sysname, $code);

This function will return all stats available for a given $sysname and $code.

62

$spool->get portfolio($sysname, $code);

This function will return a portfolio for a given $sysname and $code.

63

60 GT::Brokers

A module for calculating broker’s fee & commissions

DESCRIPTION

Brokers rules are used to calculate commissions for each buy/sell order, as well
as annual account charge.

$broker->calculate_order_commission($order)

Return the amount of money ask by the broker for the given order.

$broker->calculate_annual_account_charge($portfolio, $year)

Return the amount of money ask by the broker for the given year according
to the given portfolio.

64

61 GT::Brokers::Cortal

Overview

This module will calculate all commissions and charges according to Cortal
rules.

Calculation

For orders "A tout prix" and "prix du marché" :

5 Euros HT / order up to 1500 Euros 10 Euros HT / order up to 3000 Euros
0.30 % / order up to 100 000 Euros + 0.10 % / after

For other orders :

7.5 Euros HT / order up to 1500 Euros 12.5 Euros HT / order up to 3000
Euros 0.50 % / order up to 100 000 Euros + 0.10 % / after

Annual account charge (30/06 and 31/12) :

Up to 150 000 Euros : 0.15 % HT of the portfolio value, after 0 % Minimum
: 12 Euros HT.

$broker->calculate order commission($order)

Return the amount of money ask by the broker for the given order.

$broker->calculate annual account charge($portfolio, $year)

Return the amount of money ask by the broker for the given year according to
the given portfolio.

65

62 GT::Brokers::Dubus

Overview

This module will calculate all commissions and charges according to Dubus
rules.

Calculation

Tarif Normal :
4.9 Euros HT / order up o 2000 Euros + 0.30 % HT after (since 26/05/2005 4.9 X i:
Account charge : 0.37 A HT (min 100 K)
Tarif Forfait :

4.9 Euros HT / order up o 2000 Euros + 0.30 % HT after (since 26/05/2005 4.9 X i:
15 K Euros HT / order up to 30000 Euros

25 K Euros HT / order up to 75000 Euros

50 A Euros HT / more than 75000 Euros

Account charge : 76 kK

Parameters

The first parameter could be initialized to : "Normal" => Tarif Normal "For-
fait" => Tarif Forfait

$broker->calculate order commission($order)

Return the amount of money ask by the broker for the given order.

$broker->calculate annual account charge($portfolio, $year)

Return the amount of money ask by the broker for the given year according to
the given portfolio.

66

63 GT::Brokers::InteractiveBrokers

Overview

This module will calculate all commissions and charges according to Interac-
tiveBrokers rules.

Calculation

Current calculation for InteractiveBrokers at: http://www.interactivebrokers.com /index.html?html/retailAcco

Germany XETRA /IBIS: 0,1% of stock value, minimum of 4 EUR, maximum
of 29 EUR

Switzerland: 0,1% of stock value, minimum of 10 CHF + 0.07% Stamp Tax

UK: 0,1% of stock value, minimum of 5 GBP + 0.5% UK Stamp Tax on
purchase

Ireland: same as UK, but 1% Irish Stamp Tax

US: USD 0.01 / share, up to 500 shares USD 0.005 / share, for 501th share
and up minimum of 1 USD

Options and futures commissions are not considered.

No annual charge.

Parameters
The first parameter could be initialized to :

‘de’ => Germany Xetra, 'ch’ => Switzerland, ’ie’ => Ireland, 'uk’ =>
United Kingdom, "us’ => US Markets
$broker->calculate order commission($order)

Return the amount of money ask by the broker for the given order.

$broker->calculate annual account charge($portfolio, $year)

Return the amount of money ask by the broker for the given year according to
the given portfolio, which is 0 EUR.

67

64 GT::Brokers::Logitelnet

Overview

This module will calculate all commissions and charges according to Logitelnet
(Societe Generale) rules

Calculation

0.54% / order < 8000 Euros, 8.90 Euros minimum 0.44% / 8000 <= order <
15000 Euros 0.34 % / order up to 15000 Euros

$broker->calculate order commission($order)

Return the amount of money ask by the broker for the given order.

$broker->calculate annual account charge($portfolio, $year)

Return the amount of money ask by the broker for the given year according to
the given portfolio.

68

65 GT::Brokers::NoCosts

Overview

This module will calculate no commissions or charges.

$broker->calculate order commission($order)

Return the amount of money ask by the broker for the given order.

$broker->calculate annual account charge($portfolio, $year)

Return the amount of money ask by the broker for the given year according to
the given portfolio.

69

66 GT::Brokers::SelfTrade

Overview

This module will calculate all commissions and charges according to SelfTrade
rules.

Calculation

Forfait Découverte : 6.5 Euros HT / order up o 3000 Euros + 0.30 % HT after
Forfait Intégral : 14.95 Euros HT / order up to 10000 Euros + 0.15 % HT
after
For both options, there’s no annual account charge !

Parameters

The first parameter could be initialized to : "Découverte" => Forfait Décou-
verte "Intégral" => Forfait Intégral
$broker->calculate order commission($order)

Return the amount of money ask by the broker for the given order.

$broker->calculate annual account charge($portfolio, $year)

Return the amount of money ask by the broker for the given year according to
the given portfolio.

70

67 GT::Brokers::Usaa

Overview

This module will calculate all commissions and charges for the purchase or sale
of stock on an exchange according to Usaa brokerage charge schedules.

Calculation

For all orders:
US$21.95 + $0.02 * (quantity of shares - 1000) + $3.00

where US$3.00 is the exchange fee, and the charge of US$0.02 for shares in
excess of 1000. There is no annual account charge.

$broker->calculate order commission($order)

Return the calculated broker’s commission for the given order.

$broker->calculate annual account charge($portfolio, $year)

Returns the amount of money asked by the broker for the given year according
to the given portfolio, which is $0 in the case of USAA Brokerage.

71

68 GT::Brokers::Zebank

Overview

This module will calculate all commissions and charges according to Zebank
rules.

Calculation

0,45 % TTC / order with a minimum of 9 EUR
Free return if buy & sell during the same day.

$broker->calculate order commission($order)

Return the amount of money ask by the broker for the given order.

$broker->calculate annual account charge($portfolio, $year)

Return the amount of money ask by the broker for the given year according to
the given portfolio.

72

69 GT::CacheValues

Cache the computed values (of indic/signals) for a single share

DESCRIPTION

This object is designed to be associated with a GT::Prices object. It may contain
the computed value of some indicators corresponding to the GT::Prices object.

my $cache = GT::CacheValues->new;

Create a new GT::CacheValues that will contain computed values of some
indicators or signals.

$cache->get ($name, $i)

Return the value of the indicator $name for the day $i.

$cache->set($name, $i, $value)

Store the computed value $value of indicator $name for the day $i.
$cache->is_available($name, $i)

$cache->is_available_interval ($name, $first, $last)

Check if the value of indicator $name is available for day $i.

73

70 GT::Calculator

All data (of a single share) used for calculations

DESCRIPTION

This is a facility object to ease the collaboration between GT::Prices and GT::CacheValues.
It contains the prices (GT::Prices), and the result of various indicators and sig-
nals within two GT::CacheValues object. This object is manipulated by all the
indicators, signals and systems.
A calculator can contain the same serie of prices but indexed on different

time frames.
my $c = GT::Calculator->new($prices [, $code])

Create a new GT::Calculator object with $prices used for calculations.

The calculator is associated to share named $code.
$c->prices()

$c->indicators()
$c->signals()

Return the corresponding object of the current timeframe.
$c->prices_on_timeframe($timeframe)
$c->indicators_on_timeframe ($timeframe)

$c->signals_on_timeframe ($timeframe)

Return the corresponding object of the indicated timeframe. Learn more
about the timeframes in GT::DateTime.

$c->set_code($code)

Sets the code of the share which datas are stored in this object.
$c->code()

Returns the code of the share associated with this object.

$calc->set_current_timeframe($timeframe)

Changes the current timeframe to the indicated one. If the timeframe
doesn’t exist, it tries to create it. Returns 1 on success and 0 on failure.

$calc->current_timeframe()

Returns the current timeframe.

$calc->create_timeframe($timeframe)

Create the given timeframe with an other serie of prices available in the
calculator. Returns 1 on success and 0 on failure.

74

$calc->available_timeframe()

Returns the sorted list of available timeframes.

$calc->timeframe_is_available()

Returns true if the given timeframe is available in the calculator. Other-
wise returns false.

75

71 GT::CloseStrategy

Manages opened positions

DESCRIPTION

A CloseStrategy is more really a position manager. Once a system has opened a
position, it’s managed by a CloseStrategy. Managing means updating the stop
and deciding when to close the position.

$cs->get_indicative_stop($calc, $i, $order, $pf_man, $sys_man)

$cs->get_indicative_long_stop($calc, $i, $order, $pf_man, $sys_man)

$cs->get_indicative_short_stop($calc, $i, $order, $pf_man, $sys_man)

This function returns an indicative stop level that should be set for the
indicated day. It is used before a position is opened to evaluate a stop
level that may be used by a MoneyManagement rule.

$cs->position_opened($calc, $i, $position, $pf_man, $sys_man)

$cs->short_position_opened($calc, $i, $position, $pf_man, $sys_man)

$cs->long_position_opened($calc, $i, $position, $pf_man, $sys_man)

Those functions are callback that are launched when a position has been
opened. It can be used to place order on a target that will be valid until
they are executed (ie no_discard=1). $cs->position opened will call the
right callback depending on the the position (short or long). It can also
be used to set an initial stop level.

$cs->manage_position($calc, $i, $position, $pf_man, $sys_man)

$cs->manage_short_position($calc, $i, $position, $pf_man, $sys_man)

$cs->manage_long_position($calc, $i, $position, $pf_man, $sys_man)

Manage an open position of the corresponding type. The position may
be augmented or reduced by sending new orders modified by $manager-
>set_order_ partial(...). The stop may be updated with $position->set stop(...).

$system->precalculate_all($calc)

76

$system->precalculate_interval($calc, $first, $last)

If you run a system on a long period of time you may want to precalculate
all the indicators in order to benefit of possible optimizations. This is the
role of those 2 functions.

Functions to manage a repository of close strategies

GT::CloseStrategy: :get_registered_object ($name) ;

GT::CloseStrategy: :register_object ($name, $object);

GT::CloseStrategy: :get_or_register_object($name, $object);
GT::CloseStrategy: :manage_object (\GNAMES, $object, $class, $args, $key);

7

72 GT::CloseStrategy::ChannelBreakout
DESCRIPTION

This Channel Breakout exit strategy close a position once the lower level has
been triggered for a long position, as well as the upper level for a short position.

78

73 GT::CloseStrategy::CloseGain

This strategy closes the position once the prices have crossed a limit called
target. This target is defined as a percentage from the initial price. By default,
it’s defined as + 25 %. If you use it together with PartialGain, this strategy
will only close the remaining shares to be sold/bought. Take care however to
place the CloseGain strategy after the PartialGain strategy.

79

74 GT::CloseStrategy::OppositeSignal

This strategy closes the position once the opposite signal has been emitted by
the system. It will will close a long position on a sell signal and close a short
position on a buy signal.

Arguments

The arguments taken by this object are special. The first argument is the name
of a TradeFilter to use as the condition. It may be followed by argument to
give to the TradeFilter at creation time. After that, there’s the name of the
real CloseStrategy to apply. This strategy will only be applied if the trade filter
accepts a fake "close order".

Examples or arguments :

...>new("TF:AroonTrend", "CS:Stop:SAR"); ...->new("TF:FollowTrend",
15, "CS:Stop:SAR", 0.05, 0.02, 0.02);

The system detects the end of the arguments of the TradeFilter once it
detects "CS:" or "CloseStrategy:" at the beginning of the next argument.

80

75 CloseStrategy::Generic
DESCRIPTION

This is a simple Generic Closestrategy that closes the trade based on one or two
signals.
Parameters

First Signal

The first Signal is the signal used to close a long position.

Second Signal

The second signal is used to close short positions.

81

76 GT::CloseStrategy::LimitPeriodInTheMarket

Only allow the trade to last for X days

DESCRIPTION

This strategy closes the position once the maximum time for the trade has been
reached if the second signal is true.

The second /third parameter is a signal which can infirm the closing order of
long/short position. In particular you may want to not close a position which
looks like to be a great winner...

You confirm the order with a true value and infirm it with a false value.

EXAMPLES

Close a long position if after 3 days, the security hasn’t increased. Close a short
position if after 3 days, the security hasn’t dropped.

CS:LimitPeriodInTheMarket 3

{S:Generic:Below {I:Prices CLOSE} {I:Generic:PeriodAgo 3 {I:Prices CLOSE}}}
{S:Generic:Above {I:Prices CLOSE} {I:Generic:PeriodAgo 3 {I:Prices CLOSE}}}

=cut

sub initialize { my $self = shift; $self->add arg dependency(2, 1); }
sub long position opened { my ($self, $calc, $i, $position, $pf manager,
$sys _manager) = @ ;

return;

sub short position opened { my ($self, $calc, $i, $position, $pf manager,
$sys_manager) = @ ;

return;

sub manage long position { my ($self, $calc, $i, $position, $pf manager,
$sys_manager) = @ ; my S$initial period = $calc->prices->date($position-

>{’open_date’}); my $period in the market = $self->{args’}->get arg values($calc,

$i, 1);
return if (! $self->check_dependencies($calc, $i));
return if (! $self->{’args’}->get_arg values($calc, $i, 2));

if (($1 + 1) eq ($initial_period + $period_in_the_market)) {

my $order = $pf_manager->sell_market_price($calc, $sys_manager->get_name)
$pf_manager->submit_order_in_position($position, $order, $i, $calc);

82

s

return;

sub manage short position { my ($self, $calc, $i, $position, $pf manager,
$sys _manager) = @ ; my S$initial period = $calc->prices->date($position-
>{’open_date’}); my $period _in_the market = $self->{’args’}->get _arg_values($calc,
$i, 1);

return if (! $self->check_dependencies($calc, $i));
return if (! $self->{’args’}->get_arg values($calc, $i, 3));
if (($1 + 1) eq ($initial_period + $period_in_the_market)) {
my $order = $pf_manager->buy_market_price($calc, $sys_manager->get_name) ;

$pf _manager->submit_order_in_position($position, $order, $i, $calc);

}

return;

83

77 GT::CloseStrategy::NeverClose

This strategy never close the already opened positions. This is very usefull to
design a sort of Multiple Buy & Hold or Multiple Sell & Hold strategies.

84

78 GT::CloseStrategy::OppositeSignal

This strategy closes the position once the opposite signal has been emitted by
the system. It will will close a long position on a sell signal and close a short
position on a buy signal.

85

79 GT::CloseStrategy::PartialGain

This strategy partialy closes the position once the prices have crossed a limit
called stop. This stop is defined as a percentage from the initial price. By
default, it’s defined as + 10 %. The ratio of the position is parameterized. By
default it’s half the initial position (0.5).

86

80 GT::CloseStrategy::PartialStop

This strategy partialy closes the position once the prices have crossed a limit
called stop. This stop is defined as a percentage from the initial price. By
default, it’s defined as - 5 %. The ratio of the position is parameterized. By
default it’s half the initial position (0.5).

87

81 GT::CloseStrategy::Reinvest::InWinners

This Position Manager will reinvest money in winning trades every time they
meet a new target. This strategy is based on the famous "Let your profits run
and cut your losses" while thinking about trend following systems where it is
very profitable to bet more when we catched a "big one" !

88

82 GT::CloseStrategy::Reinvest::ShortGain

In a long position the gains are "automatically" reinvested since the initial sum
and the gains are on the market. With a short position this is no more true.
This CloseStrategy tries to defeat this by reinvesting the gains each time
a certain amount of gain has been made since last time the position was aug-
mented.
Use this CloseStrategy at the end of the "system chain" so that a position
is not augmented if it’s planned to be closed.

89

83 GT::CloseStrategy::Stop::BasedOnlIndicators

Overview

This strategy end up a position once prices have crossed the trailing stop deter-
mined by indicators.

90

84 GT::CloseStrategy::Stop::Breakeven

Overview

This strategy place a stop order when we reach a profit target, to be sure that
if things are going wrong we will never let a winning trade become a losing one
! The stop should be calculated by including commission & slippage.

91

85 GT::CloseStrategy::Stop::ExtremePrices

This strategy closes the position once the prices have crossed up the highest
high in a short position and crossed down the highest low in a logn position.

92

86 GT::CloseStrategy::Stop::Fixed

This strategy closes the position once the prices have crossed a limit called
stop. This stop is defined as a percentage from the initial price. The limit is
parameterized. By default it’s 4%.

93

87 GT::CloseStrategy::Stop::KeepRunUp

Overview

This strategy closes the position once the prices have crossed the trailing stop
defined as a percentage below the highest high value for a long trade or above
the highest low value for a short trade, called the "run up", since the trade is
open. The purpose of this strategy is to keep opening profits and avoid to turn
profitable trades into loosing ones.

94

88 GT::CloseStrategy::Stop::SAR

Overview

This strategy end up a position once prices have crossed the trailing stop deter-
mined by the Parabolic SAR (Stop And Reversal).

Note

Keep in mind that some source say "the SAR value is today’s, not tomorrow’s
stop level" and other don’t ! :)

Using the Parabolic SAR can be very helpful as long as the security is not
prone to short term price trend reversals. If price is erratic, reversing quickly in
the short trend, the Parabolic SAR will likely produce poor results.

Links

http://www.stockcharts.com/education/Resources/Glossary /parabolicSAR.html
http://www.equis.com /free/taaz/parabolicsar.html http: //www.linnsoft.com /tour/techind /sar.htm

95

89 GT::CloseStrategy::Stop::VAR

Overview

This method uses market volatility and the concept of value at risk (VAR)
to help determine meaningful stop-loss prices and position limits for trading
securities.

References

"Value At Risk And Technical Analysis" by Luis Ballesca-Loyo Technical Anal-
ysis of Stocks and Commodities - August 1999

96

90 CloseStrategy of Trend Following System (TFS)

97

91 GT::Conf

Manage configuration

DESCRIPTION

This module provides functions to manage personal GeniusTrader configuration.
The configuration information are stored in file ~/.gt/options by default.

The configuration file format is similar to a perl hash, in other words, a key
followed by data for that key. keys are delimited from their value by whitespace.
key values can contain embedded whitespace.

key value strings can be continued across multiple lines by delimiting the
newline with a backslash (\) (watch out for trailing whitespace after the \ and
before the newline).

comments introduced with a # as the first character on a line. data lines
cannot contain a comment since the # character is used in many data strings.

blank lines and lines with only whitespace are ignored.

EXAMPLES of ~/.gt/options Entries

this is an example of a comment
DB::module genericdbi
DB: :bean: :dbname beancounter
Graphic: :Candle: :UpBorderColor "[0,180,80]"
Graphic: :Candle: :DownBorderColor "[180,0,80]"
this example shows how continuing key values across lines can be useful.

DB: :genericdbi::prices_sql SELECT day_open, day_high, day_low, \
day_close, volume, date FROM stockprices WHERE symbol = ’$code’ ORDER \
BY date DESC

comments are permitted on data lines provided they can be distinguished
from positional arguments markers (e.g. #1, #2, etc). in order to do this any
trailing data line comment marker (#) must be surrounded by whitespace. the
code is a bit more forgiving, using this regex (\s+#[\s\D]+.$)

note that the comment must follow the end of the logical data line and termi-
nates at the end of the logical line. logical line means the line after continuation
processing has completed.

examples:
Aliases::Global: :TFS2[] SY:TFS #1 #2 | CS:SY:TFS #1 # comment
graphic: :positions::buycolor "[0,135,0]" # very dark green
graphic: :buysellarrows: :buycolor "[0,135,0,64]" # semitransparent dark green

note: configuration keys are lower cased automatically regardless of how
they are defined, but their values are as specified when defined

98

FUNCTIONS

GT::Conf::load([$file 1)

Load the configuration from the indicated file. If the file is omitted then it
looks at ~/.gt/options by default.

GT::Conf::clear()

Clear all the configuration.

GT::Conf::store($file)

Write all the current configuration in the given file. Note: all prior commen-
tary, if any is lost.

GT::Conf: :get ($key, $defaultValue)

Return the configuration value for the given key. If the key doesn’t exist, it
returns the optional defaultValue.

If neither the key nor defaultValue exist, it returns undef.

GT::Conf: :set($key, $value)

Set the given configuration item to the corresponding value. Replaces any
previous value.

GT::Conf::default($key, $value)

Set a default value to the given item. Must be called by GT itself to give
reasonable default values to most of configurations items.

GT::Conf::get_first($key, ...)

Return the value of the first item that does have a non-zero value.

GT::Conf::=_get_home_path()

Helper function, returns the home directory environment variable HOME on
Unix or on windows the environment variables HOMEDRIVE . HOMEPATH

GT::Conf::conf_dump(["regex"])

Helper function, writes the entire configure key=value pairs on stderr. code
example: GT::Conf::conf dump;

pass a perl regex string to filter the output

my $gt_root_dir = GT::Conf::get_gt_root()

Helper function, returns the gt root directory which is the directory that con-
tains GT and Scripts directories, along with any others that may be there. if that
configuration key-value is unset check for the environment variable GT ROOT
otherwise returns an empty string

99

92 GT::DB

Database to retrieve (an history of) prices of various shares

DESCRIPTION

No documentation available. Look at the DB::* modules for real exemples.

get_name ($code)
Returns the long name of the market (if defined).

See also ~/.gt /sharenames which contains lines of the form <code>\t<long
name> mapping a market code to its long name.

100

93 GT::DB::CSV

Access to a text files by DBI::CSV

DESCRIPTION
This module handels the access to textfiles by using the DBI:File-module.

Configuration

You can put some configuration items in ~/.gt/options to indicate where the
database is.

DB::csv::database : the type of the database ("CSV" by default)
DB::csv::dbname : the name of the database ("cours" by default)
DB::csv::dbhost : the host of the database ("" = localhost by default)
DB::csv::dbuser : the user account on the database

DB::csv::dbpasswd : the password of the user account

Functions
GT::DB::csv->new()

Creates a new database-object
$db->disconnect

Disconnects from the database.
$db->init_table($code)

Creates the table of stock $code.
$db->init_add_info()

Creates the addinfo-table.
$db->init_add_info()

Creates the shares-table.

$db->get_prices($code)

Returns a GT::Prices object containing all known prices for the symbol
$code.

$db->get_last_prices($code, $limit)

Returns a GT::Prices object containing the $limit last known prices for
the symbol $code.

101

$db->insert ($code)

Creates the table of stock $code.
$db->get (parameters)

Get the datasets where all the parameters match
$db->available($code, $date)

Returns 1 if a dataset for the corresponding day is available.
$db->get (parameters)

Delete the datasets where all the parameters match

$db->edit(parameters)
Edit the dataset where the date and the code matches

$db->table_exists($code)

Test if a table for stock $code already exists
$db->get_db_name($code)

Returns the name of the stock designated by $code.
$db->get_db_code ($name)

Returns the code of the stock designated by $name.
$db->get_add_info($code,$date)

Returns an additional information about the stock
$db->get_add_info($code, $date)

Returns an additional information about the stock
$db->set_add_info($value, $info, $code, $date)

Set an additional information about the stock
$db->update_from_source($code)

This function is getting the actual information from the web.
$db->get_all_prices($code)

Dummy function. Need to define a clear interface for the exchange.

$db->merge_from_source($source, $code)

Merges the content of an other database/source into the current db. This
needs to be updated with a "ranking" algorithm.

$db->merge_all_from_source($source)

Merges the content of all shares in an other database/source into the
current db.

102

$db->update_all_from_source($source)

Updates all shares from a source.

103

94 DB:HTTP

Retrieve prices from a CGI

DESCRIPTION
Overview

This access module enable you to download prices from a remote server using a
CGI script (cf web/quotes.pl).

Configuration

Most configuration items have default values, to alter these defaults you must
indicate the configuration item and its value in your SHOME/.gt/options file,
especially for authentification purpose.
DB::module HTTP
Informs gt you are using the HT'TP.pm module. This configuration item
is always required in your SHOME/.gt /options file.
DB::HTTP::url : The URL that will be requested to download
DB::HTTP::location : The location of the server (www.geniustrader.org)
DB::HTTP::zone : The server zone (ie: admin)
DB::HTTP::username : The user name (ie : guest)
DB::HTTP::password : The password (ie : anonymous)

DB::HTTP::marker string

Delimits fields in each row of the data file. The marker defaults to the tab
character *\t’.

DB::HTTP::header _ lines number

The number of header lines in your data file that are to be skipped during
processing. Lines with the either the comment symbol '#’ or the less than
symbol <’ as the first character do not need to be included in this value..
The header lines default value is 0.

DB::HTTP::format 0/1|2|3 (default is 3) The format of the date/time
string. Valid values are: 0 - yyyy-mm-dd hh:nn:ss (the time
string is optional) 1 - US Format (month before day, any for-
mat understood by Date::Calc) 2 - European Format (day before
month, any format understood by Date::Calc) 3 - Any format
understood by Date::Manip

104

DB:

DB:

DB:

DB:

DB::

:HTTP::fields::datetime number

Column index where to find the period datetime field. Indexes are 0
based. For the particular case of datetime, can contain multiple indexes,
useful when date and time are separate columns in the data file. The date
time format is anything that can be understood by Date::Manip. A typical
example would be YYYY-MM-DD HH:NN:SS. The default datetime index
is 5.

:HTTP::fields::open number

Column index where to find the period open field. Indexes are 0 based.
The default open index is 0.

:HTTP::fields::low number

Column index where to find the period low field. Indexes are 0 based.
The default low index is 2.

:HTTP::fields::high number

Column index where to find the period high field. Indexes are 0 based.
The default high index is 1.

DB::HTTP::fields::close number

Column index where to find the period close field. Indexes are 0 based.
The default close index is 3.

HTTP::fields::volume number

Column index where to find the period volume field. Indexes are 0 based.
The default volume index is 4.

You can set the DB::HTTP::directory configuration item to tell where the
quotes are cached.

Functions

new()

Create a new DB object used to retry quotes from a CGI on a remote
server.

$db->disconnect

Disconnects from the database.

$db->set_directory("/new/directory")

Indicate the directory containing all the cached data.

$db->get_prices($code, $timeframe)

Returns a GT::Prices object containing all known prices for the symbol
$code.

105

$db->get_last_prices($code, $limit, $timeframe)
NOT SUPPORTED for HTTP db.

Returns a GT::Prices object containing the $limit last known prices for
the symbol $code.

106

95 DB::MetaStock access module

Overview

The MetaStock access module is able to retrieve quotes from almost any type
of MetaStock/Computrac database.

Note

This module calls the binary program identified by the $SHOME/.gt/options
file option "DB:metastock::program" ("/bourse/tools/MetaStockReader" by
default) to get quotes from your metastock database.

$HOME/ .gt/options file option "DB::metastock::directory" must indicate
the directory of the metastock database. (no default).

Please refer to /bourse/tools/MetaStockReader source if you want to learn
more about it.

NOTE: this module and the companion binary program has been depreciated
in favor of the stand-alone perl module (unfortunately) also named MetaStock-
Reader. refer to that modules pod

Configuration

You can indicate the directory which contains the MetaStock database by setting

the DB::metastock::directory configuration item. You can also set DB::metastock::program
to indicate where the MetaStockReader binary program is located (complete
pathname).

new()

Create a new DB object used to retry quotes from a MetaStock database.

$db->disconnect

Disconnects from the database.

$db->set directory(" /new/directory")

Indicate the directory containing all the text files.

$db->get prices($code, $timeframe)

Returns a GT::Prices object containing all known prices for the symbol $code.

107

$db->get last prices($code, $limit, $timeframe)

NOT SUPPORTED for text db.
Returns a GT::Prices object containing the $limit last known prices for the
symbol $code.

108

96 DB::MetaStockReader access module

Overview

The MetaStockReader access module is able to retrieve quotes from almost any
type of MetaStock database.

This module does not require any other code to support its operation and it
is not intended to be used with GT::DB::MetaStock and, although named Meta-
StockReader, it is not the companion program required by GT::DB::MetaStock.

Synopsis

my $db = create_standard_object("DB::" . GT::Conf::get("DB::module"));
$db->initialize;

$db->get_prices("FR0000130007") ;

$db->disconnect;

or

my $db = create_standard_object("DB::" . GT::Conf::get("DB::module"));
$db->get_prices ("FR0000130007") ;

$db->disconnect;

$db->initialize is used to initialize the isin code list.
Function "get_prices" first test if the isin code is initiasize, if not
it call the function "initialize".

Note

This module read the MASTER and the XMASTER file of you security direc-
tory to get quotes, with a directory and a symbol as main parameters. The
MASTER file contain only the 255 first file (*.DAT) security of your directory.
The XMASTER file all the others security (* MWD) of your directory.

Configuration

NOTE: this module supercedes the module GT::DB::MetaStock. do not attempt
to use both.

You can indicate the directory which contains the MetaStock database by
setting the DB::metastock::directory configuration item.

new()

Create a new DB object used to retry quotes from a MetaStock database.

$db->disconnect

Disconnects from the database.

109

$db->initialize

Construct the list of isin code.

$db->set directory(" /new/directory")

Indicate the directory containing your equity.

$db->read master

Read the MASTER file of your directory containing your equity.

$db->read xmaster

Read the XMASTER file of your directory containing your equity.

$db->find _isin($code)
Return the description for the symbol $code.

$db->get db_name($code)

Return the name for the symbol $code.

$db->get prices($code, $timeframe)

Returns a GT::Prices object containing all known prices for the symbol $code.

$db->puissance($value00,$value0l,$value02,$value03)

Convert a MSBIN format to a float perl format (4 bytes). It convert first to a
IEEE float format (4 bytes).

$db->get last prices($code, $limit, $timeframe)

NOT YET SUPPORTED for MetaStockReader module.
Returns a GT::Prices object containing the $limit last known prices for the
symbol $code.

97 COPYRIGHT

Copyright 2003-2005 Tournedouet Yannick.

110

98 DB::Text access module

Overview

This database access module enable you to work with a full directory of text
files.

Configuration

Most configuration items have default values, to alter these defaults you must
indicate the configuration item and its value in your $HOME/.gt /options file.

DB::module Text
Informs gt you are using the Text.pm module. This configuration item is
always required in your $HOME/.gt/options file.

DB::text::directory path
where files are stored. This configuration item is always required in your
$HOME/.gt/options file.

DB::text::marker string
Delimits fields in each row of the data file. The marker defaults to the tab
character *\t’.

DB::text::header lines number

The number of header lines in your data file that are to be skipped during
processing. Lines with the either the comment symbol ’#’ or the less than
symbol <’ as the first character do not need to be included in this value..
The header lines default value is 0.

DB::text::file extension string

To be appended to the code file name when searching the data file. For
instance, if the data file is called EURUSD.csv this variable would have
the value ’.csv’ (without the quotes).

The default file extension is *.txt’.

if you have data in different timeframes, for instance, EURUSD _hour.csv
and EURUSD _ day.csv, use the following value for this directive:

DB::text::file extension $timeframe.csv

DB::text::format 0|1]2|3 (default is 3) The format of the date/time
string. Valid values are: 0 - yyyy-mm-dd hh:nn:ss (the time
string is optional) 1 - US Format (month before day, any for-
mat understood by Date::Calc) 2 - European Format (day before
month, any format understood by Date::Calc) 3 - Any format
understood by Date::Manip

111

DB:

DB:

DB:

DB:

DB:

DB:

itext::fields::datetime number

Column index where to find the period datetime field. Indexes are 0
based. For the particular case of datetime, can contain multiple indexes,
useful when date and time are separate columns in the data file. The date
time format is anything that can be understood by Date::Manip. A typical
example would be YYYY-MM-DD HH:NN:SS. The default datetime index
is 5.

itext::fields::open number

Column index where to find the period open field. Indexes are 0 based.
The default open index is 0.

itext::fields::low number

Column index where to find the period low field. Indexes are 0 based.
The default low index is 2.

:text::fields::high number

Column index where to find the period high field. Indexes are 0 based.
The default high index is 1.

:text::fields::close number

Column index where to find the period close field. Indexes are 0 based.
The default close index is 3.

itext::fields::volume number

Column index where to find the period volume field. Indexes are 0 based.
The default volume index is 4.

new()

Create a new DB object used to retrieve quotes from a directory full of
text files containing prices.

$db->disconnect

Disconnects from the database.

$db->set directory(" /new/directory")

Indicate the directory containing all the text files.

$db->get prices($code, $timeframe)

Returns a GT::Prices object containing all known prices for the symbol
$code.

112

$db->get last prices($code, $limit, $timeframe)

Returns a GT::Prices object containing the $limit last known prices for
the symbol $code.

113

99 GT::DB::bean

Access to beancounter database of quotes

DESCRIPTION

This module is used to retrieve quotes from a MySQL /PostgreSQL database
as setup by beancounter. By default, the database is supposed to be run-
ning on localhost and the only authentication done is the standard Unix
one.

Configuration

You can put some configuration items in ~/.gt/options to indicate where
the database is.

DB::bean::dbname : the name of the database ("beancounter" by
default)

DB::bean::dbhost : the host of the database ("" = localhost by
default)

DB::bean::dbport : the port where the server is running ("" =
default port number)

DB::bean::dbuser : the user account on the database (current user
by default)

DB::bean::dbpasswd : the password of the user account

DB::bean::db : the database being used (mysql/Pg) ("mysql" by
default)

Functions

GT::DB: :mysql->new()

$db->disconnect
Disconnects from the database.

$db->get_prices($code, $timeframe)
Returns a GT::Prices object containing all known prices for the sym-
bol $code.

$db->get_last_prices($code, $limit, $timeframe)

Returns a GT::Prices object containing the $limit last known prices
for the symbol $code.

Notice that beancounter only supports daily data, therefore it will
throw an error if you try to retrieve data in timeframes smaller than
daily.

114

$db->get_db_name($code)
Returns the name of the stock designated by $code.

115

100 GT::DB::genericdbi

Access to any database of quotes, as long as a dbi driver is available

DESCRIPTION

This module is used to retrieve quotes from your existing database

Configuration

You can put some configuration items in ~/.gt/options to indicate where
the database is.

DB::genericdbi::dbname : the name of the database
DB::genericdbi::dbhost : the host of the database
DB::genericdbi::dbport : the port where the server is running
DB::genericdbi::dbuser : the user account on the database
DB::genericdbi::dbpasswd : the password of the user account
DB::genericdbi::db : the database being used (mysql|Pg|...) ("mysql"
by default)
DB::genericdbi::prices sql : The query used to retrieve price data.

Make sure to retrieve the data in the following order: open, high,
low, close, volume, date/time

Also, make sure to retrieve the data ordered by date/time descending
Example:

SELECT period_open, period_high, period_low, period_close, volume, Conc:

DB::genericdbi::name sql : The query used to retrieve a sym-
bol’s description.

Example:

SELECT name FROM stockinfo WHERE symbol = ’$code’;

Functions

GT: :DB: :genericdbi->new()
$db->disconnect

Disconnects from the database.
$db->get_prices($code, $timeframe)

Returns a GT::Prices object containing all known prices for the sym-
bol $code.

116

$db->get_last_prices($code, $limit, $timeframe)

Returns a GT::Prices object containing the $limit last known prices
for the symbol $code in the given $timeframe.

$db->get_db_name($code)
Returns the name of the stock designated by $code.

117

101 GT::DB:pg

Access to PostgreSQL database of quotes

DESCRIPTION

This module is used to retry quotes from a Postgresql database. By de-
fault, the database is supposed to be running on localhost and the only
authentication done is the standard Unix one.

Configuration

You can put some configuration items in ~/.gt/options to indicate where
the database is.

DB::pg::dbname : the name of the database ("cours" by default)

DB::pg::dbhost : the host of the database ("" = localhost by de-
fault)

DB::pg::dbuser : the user account on the database
DB::pg::dbpasswd : the password of the user account

Functions

GT: :DB: :pg->new()
$db->disconnect

Disconnects from the database.
$db->get_prices($code, $timeframe)

Returns a GT::Prices object containing all known prices for the sym-
bol $code.

$db->get_last_prices($code, $limit, $timeframe)

Returns a GT::Prices object containing the $limit last known prices
for the symbol $code.

$db->get_db_name($code)
Returns the name of the stock designated by $code.

118

102 GT::DateTime

Manage TimeFrames and provides date/time helper functions

DESCRIPTION

This module exports all the variable describing the available "periods"
commonly used for trading : $SPERIOD TICK $PERIOD 1MIN, $PE-
RIOD 5MIN, $PERIOD 10MIN, $PERIOD 15MIN, $PERIOD 30MIN,
$HOUR, $PERIOD 2HOUR, $PERIOD 3HOUR, $PERIOD 4HOUR,
$DAY, SWEEK, $MONTH, $YEAR.

The timeframes are represented by those variables which are only numbers.
You can compare those numbers to know which timeframe is smaller or
which one is bigger.

It also provides several functions to manipulate dates and periods. Those
functions use modules GT::DateTime::* to do the actual work depending
on the selected timeframe.

Functions provided by submodules

map_date_to_time($date) is a function returning a time (ie a number
of seconds since 1970) representing that date in the history. It is usually
corresponding to the first second of the given period.

map_time to_date($time) is the complementary function. It will return
a date describing the period that includes the given time.

Functions

GT::DateTime: :map_date_to_time($timeframe, $date)

GT::DateTime: :map_time_to_date($timeframe, $time)
Those are the generic functions used to convert a date into a time
and vice versa.

GT::DateTime: :convert_date($date, $orig_timeframe, $dest_timeframe)

This function does convert the given date from the $orig_timeframe
in a date of the $dest timeframe. Take care that the destination
timeframe must be bigger than the original timeframe.
GT::DateTime::1list_of_timeframe()
Returns the list of timeframes that are managed by the DateTime
framework.
GT: :DateTime: :name_of_timeframe ($tf)
Return the official name of the corresponding timeframe.

119

GT::

GT::DateTime: :timeframe_ratio($first, $second)

DateTime: :name_to_timeframe ($name)

Returns the timeframe associated to the given name.

Returns how many times the second timeframe fits in the first one.

120

103 GT::DateTime::10Min

This module treat dates describing a 10 minute period. They have the
following format : YYYY-MM-DD HH:N0:00

121

104 GT::DateTime::15Min

This module treat dates describing a quarter-hour. They have the follow-
ing format : YYYY-MM-DD HH:NN:00

122

105 GT::DateTime::1Min

This module treat dates describing a 1 minute period. They have the
following format : YYYY-MM-DD HH:NN:00

123

106 GT::DateTime::2Hour

This module treat dates describing the 2Hour timeframe. They have the
following format : YYYY-MM-DD HH:00:00

124

107 GT::DateTime::30Min

This module treat dates describing an half-hour. They have the following
format : YYYY-MM-DD HH:N0:00

125

108 GT::DateTime::3Hour

This module treat dates describing the 3Hour timeframe. They have the
following format : YYYY-MM-DD HH:00:00

126

109 GT::DateTime::4Hour

This module treat dates describing the 2Hour timeframe. They have the
following format : YYYY-MM-DD HH:00:00

127

110 GT::DateTime::5Min

This module treat dates describing a 5 minute period. They have the
following format : YYYY-MM-DD HH:NN:00

128

111 GT::DateTime::Day

This module treat dates describing a day. They have the following format
: YYYY-MM-DD

129

112 GT::DateTime::Hour

This module treat dates describing an Hour. They have the following
format : YYYY-MM-DD HH:00:00

130

113 GT::DateTime::Month

This module treat dates describing a month. They have the following
format : YYYY-MM

131

114 GT::DateTime::Tick

This module treat dates describing ticks. They have the following format
: YYYY-MM-DD HH:NN:SS

132

115 GT::DateTime::Week

This module treat dates describing a week. They have the following format
:YYYY-WW

WW being the week number.

133

116 GT::DateTime::Year

This module treat dates describing a year. They have the following format
S YYYY

134

117 GT::Dependency

A dependency system for indicators/signals/systems.

DESCRIPTION

This module is inheritated by any object which needs a Dependency mech-
anism. That’s why it’s listed in @QISA of GT::Indicators, GT::Signals,
GT:Systems and several other modules ...

$object->add_indicator_dependency($indic, $nbdays)
$object->add_signal_dependency($signal, $nbdays)
$object->add_prices_dependency($nbdays)
$object->add_arg_dependency($argnum, $nbdays)
$object->add_volatile_indicator_dependency($indic, $nbdays)
$object->add_volatile_signal_dependency($signal, $nbdays)
$object->add_volatile_prices_dependency($nbdays)

$object->add_volatile_arg_dependency($argnum, $nbdays)

Add a dependency on a precise indicator or signal. The current object
needs nbdays of history (current day included) on the given indicator
or signal to be able to produce a result. A prices dependency indicates
the number of days of history prices

A volatile dependency will be removed by $object->remove volatile dependencies().
It is used for adding last-minute dependencies whose values are known
late because they are computed based on other data.

$object->get_prices_dependency()
$object->get_signal_dependencies()

$object->get_indicator_dependencies()
Return the dependency or list of dependencies.

$object->remove_volatile_dependencies()
Removes all volatile dependencies.
$object->days_required

Returns the number of days required so that the object can produce
a result.

($first, $last) = $object->update_interval ($calc, $first, $last)

Check the limits of the interval. Return new limits. The interval is
contained in the first interval but all days will produce a result. The
new interval may be equal to the given interval.

$object->check_dependencies($calc, $i)

135

$object->check_dependencies_interval($calc, $first, $last)

Check that there is enough data available. If there isn’t return false.
Otherwise make sure the required data are computed and return true.

$object->dependencies_are_available($calc, $i)

$object->dependencies_are_available_interval($calc, $first, $last)

Check if all dependencies have been computed.
$object->compute_dependencies($calc, $i)

$object->compute_dependencies_interval ($calc, $first, $last)

Calculate all dependent indicators and detect all dependent signals.

136

118 GT::Indicators::Example

The example indicator

DESCRIPTION

The Example indicator trys to express X, Y, Z.

Calculation

The Example indicator is calculated by ...

Parameters

The number of days of the average ...

137

119 miscellaneous file format information

this document may contain slightly misleading information, due to changes
in the gt code base, the authors operational version, which served as the
basis for this data or the errors might just be errors, either explicit or
error by omission.

document improvements are welcome. please post to the gt development
list.

files used by genius trader (gt)
$HOME/.gt -- this is your private gt configuration directory

data kept here will be used only when the gt process is running
with your user id.

/usr/share/geniustrader is a shared geniustrader directory. files
kept there can be shared by anyone. gt will search for specific files
in this directory for alias files (see below) and rgb (color) data.
this path is the default path, it can be changed using an envvar

and gt configuration key-values. the envvar is "GT_ROOT". the default
root can also be set using the gt configuration key "GT::RO0T".
config keys for Path::Aliases (8 of them) and SearchPath::X11_rgb for
the color data file.

$HOME/.gt/options -- this is your primary gt configuration file

scan.pl and backtest_many.pl
market_file -- list of security codes
system_file -- system-signals to scan

aliases files
global_alias -- from dir $HOME/.gt/
object_alias -- from Path::Aliases keys for each specific type

colors -- x11 rgb file from SearchPath::X11_rgb search path
used if a colour name is used but not found in the hardcoded list
no harm if file not found (named colour will fail to "black".

xml files (GT/Metalnfo.pm)
your gt portfolio
-- named on command line manage_portfolio.pl and other
Script apps (backtest*.pl etc)
-- named in graphic config PortfolioPositions directives

138

security (price data) databases (flat files)
GT/Prices.pm -- prices files
GT/DB.pm -- $HOME/.gt/sharenames (used when the prices database

scheme doesn’t include company name)

GT/DB/MetaStockReader.pm
GT/DB/MetaStock.pm (depreciated in favor of MetaStockReader.pm)
GT/DB/HTTP.pm

fixme

chart image files -- most likely written to stdout by default
GT/Graphics/Driver/GD.pm
GT/Graphics/Driver/SVG.pm
GT/Graphics/Driver/ImageMagick.pm
GT/Graphics/Driver/Postscript.pm

fixme

analysis report templates --
fix me

prior analyses (GT/Analyzers/Process.pm)
fixme

120 market file — this is just a general text
file

a list of market codes or security symbols one code per line. the code can
appear anywhere on the line. a ‘#’ indicates the beginning of a comment;
characters up to the end of the line are ignored. a comment may also
appear on a line containing a code.

blank lines, and lines containing only whitespace are ignored.

codes are character strings from the this set of chars [a-zA-X0-9_ "]

scan.pl runs its analysis on each code in turn

121 system file | signal file — this is just a
general text file

a list of one or more gt signal or system descriptions or specifications (sig-
sys-desc), one per logical line. long sig-sys-desc can be broken into shorter

more readable lines by placing the line continuation character ’\’ just prior
to the line terminator character (watch out for trailing whitespace and be

139

sure there is a blank line or normally terminated line as the last line of a
logical line.

a ‘4’ indicates the beginning of a comment; characters up to the end of
the line are ignored. comments can appear on sig-sys-desc that are on one
line, but comments cannot be embedded into logical line groupings. you
can effectively comment out an entire logical line by putting a comment
on first line of the logical line group.

blank lines, and lines containing only whitespace are ignored.

scan.pl runs an analysis based on each sig-sys-desc found in the file.

sig-sys-desc examples:

SY:SMA 2 3 4 | TF:AcceptAll

S:Generic:And \

{ S:Generic:Below { I:Prices CLOSE } { I:G:PeriodAgo } } \

{ S:Generic:Below { I:Prices CLOSE } { I:SMA 50 {I:Prices CLOSE} } } \
NAME below 50 day sell \

the following logical line group is effectively commented out

#SY:SMA 10 20 200 \
| TF:AcceptAll

System:ADX 30 | TradeFilters:LongOnly | MoneyManagement :FixedSum
same as above using abbreviations
SY:ADX 30 | TF:LongOnly | MM:FixedSum

122 global alias — SHOME/.gt/options file

a <system alias> is a short hand for one or more system components.
system components is another reference for sig-sys-desc. a <system _alias>
name should be restricted to the characters in this character set [a-zA-Z0-
9] (alphanumeric and underscore). using any of these characters is bound
to be troublesome: ":@#][]’.

the format of a system alias entry:
"Aliases::Global: :<system_alias>" <whitespace> <sig-sys-desc>

where "Aliases::Global::<system _alias>" is case insensitive, and will al-
ways be processed in lower case. <sig-sys-desc> on the other hand is case
sensative. see sig-sys-desc for details on how to craft these elements.

140

123 object alias — system component (objects)
aliases

object aliases are aliases of individual system components but not complete
or partial systems (e.g. they cannot contain a "|" symbol.

these aliases are stored in top level dir /usr/share/geniustrader/aliases by
default, but are also searched for in $HOME/.gt /aliases/.

object aliases are grouped by the kind of system component ("signals",

"indicators", "systems", "closestrategy", "moneymanagement", "trade-

filters", "orderfactory", "analyzers") <kind> they represent and are searched

for in directories bearing that name. this allows a common name to be
used in a system context.

the format of a object _alias entry:

"Path::Aliases::<kind>::<object_alias>" <whitespace> <sig-sys-desc>
or in your SHOME/.gt/options file:

"Aliases::<kind>::<object_alias>" <whitespace> <sig-sys-desc>

where "(Path::)*Aliases::<kind>::<object _alias>" is case insensitive — is
it?

can <kind> be abbreviated using the standards?

object alias examples:

Aliases::Indicators::MyMean { I:Generic:Eval (#1 + #2) / 2 }

other than that they are very much like a system alias, but in use they are
referenced in <sig-sys-desc> by prefixing the ’Q’ symbol to the <object alias>
identifier. for example { @L:MyMean 50 {I:RSI} } denotes that the indi-
cator I:MyMean is an object alias.

124 $HOME/.gt/options

file containing perl hash key-values that set the value of the given key. for
the most part every key will (should) have a hardcoded default value, use
this file to override the default should you want a different value.

gt isn’t (but probably should be) shipped with a default options file. there
are a couple required items that must be set there as they do not have
hardcoded values:

141

securities prices sources
truetype font paths

securities prices sources setup:

to use the sample data files add these lines — watch for trailing whitespace

DB: :module Text
DB: :text::directory /path/to/sample_data/directory
no trailing / on directory

to use a database engine
refer to your db engine type interface in GT/DB/
fix me

paths to your computers truetype fonts — be sure to edit the path as well as
the actual file name for your computer absolute minimum is Path::Font::Arial
key and a value

Path::Font::Arial /path/to/truetype/font/arial.ttf
Path::Font::Courier /path/to/truetype/font/couri.ttf
Path: :Font::Times /path/to/truetype/font/times.ttf
Path: :Font::Fixed /path/to/truetype/font/VeraMono.ttf

a broker module (not required, but recommended) Brokers::module Self-
Trade

background color override (default is harsh white) Graphic::BackgroundColor
"LINEN"

there isn’t but maybe should be a key for the graphics driver (GD (rec-
ommended), SVG, PostScript, ImageMagick). this is set in the gt Script
app (Scripts/backtest.pl, Scripts/graphic.pl)

125 xml files (GT/Metalnfo.pm)

fix me

126 $HOME/.gt/sharenames

lines mapping a market code to its long name. each line has this format:
’the securities code’ a literal tab character ’the securities long name’

do not quote the code. if the long name is quoted the quotes will be part
of the name string.

142

127 security (price data) databases

GT/Indicators/EVWMA.pm /bourse/metainfo/ # EVWMA.pm appears broken
GT/List.pm /bourse/listes/
fix me

128 analysis report templates

Scripts/manage_portfolio.pl Scripts/Templates/

Scripts/backtest.pl Scripts/Templates/
Scripts/backtest_multi.pl /bourse/perl
fix me

129 prior analyses (GT /Analyzers/Process.pm)

fix me

130 chart image files

fix me

131 DESCRIPTION

fix me

132 BUGS

fix me

133 SEE ALSO

scan.pl, backtest.pl, backtes many.pl, gt _sig-sys-desc.pod, Tools.pm, SHOME/.gt /options,
$HOME/ .gt/aliases/, SHOME/.gt /portfolio/,

143

134 gt system description specifications (sys-
sig-indic-desc)

used for defining indicators, signals, systems, and trading system compo-
nents. these sys-sig-indic-desc are found throughout gt configuration and
control files and on command lines.

sys-sig-indic-desc are text strings used to specify or describe the parame-
ters used by gt to perform a particular technical analysis (ta) on a security.

in general sys-sig-indic-desc

a)
are delimited with curly brackets {...}’
for example in { I:SMA } the whitespace within the curly brackets is
ignored, thus {I:SMA} is equivalent, but harder for a human to scan.
b)
may include other sys-sig-indic-desc

for example { I:Prices CLOSE } is an embedded sys-sig-indic-desc in
this { I:SMA 50 { I:Prices CLOSE } } sys-sig-indic-desc.

are written with case sensitive tokens unless otherwise noted

sig-sig-indic names are always case sensitive, but other arguments
might be case insensitive. refer to the pod for the sig-sig-indic in
question, or to the documentation regarding the argument (for ex-
ample GT::Tools, GT::Graphics::Tools). in the examples a) and b)
above only ’'CLOSE’ is case insensitive:

{ I:SMA 50 { I:Prices close } }
d)

use whitespace to delimit individual elements within a sys-sig-indic-
desc. for example example b) above can be written like this:

{I:SMA 50{I:Prices CLOSE}}

note the required whitespace to delimit the time period (50) from the
indicator name (I:SMA) and the price value id token (CLOSE) from
the indicator name (I:Prices).

may be written using sig-sig-indic name abbreviations (refer to GT::Tools
for details)

without sig-sig-indic name abbreviations example a) would be written
like this

{ Indicators::SMA }

144

note Indicators is plural (and case sensitive), as are all the sig-sig-

indic names. but trading system components are a mixed bag, some

plural, others singular (see GT /Docs/how _to_spec+debug a_system.pod),
the singular and any misspelling or altered case will fail, usually with

a somewhat unhelpful error message. so use the abbreviations.

f)
may include system or object aliases
{ @S:3EMAlong #1 #2 #3 } is an example of a signal object alias
(@S:3EMAlong) with 3 arguments (refer to GT /Docs/object_aliases.pod
and GT::Tools for details on system and object aliases).

g)

trading system components are delimited with vertical bar ’|.

trading systems include a system and possibly other components

that, collect together the named components and listed parameters

into a trading system rule set. (see GT/Docs/how _to_spec+debug a _system.pod)
for example

SY:ADX | TF:LongOnly | MM:FixedSum

ADX system with a longonly trade filter and a fixed sum money
manageer. however, missing from this trading system are a broker,
which will add (subtract) trading and account costs from trading
performance analyses. order filters, which aid in preventing trades
that have flaws that the systems signals do not recognize. lastly, and
most importantly a closingstrategy, which determines when to close
an existing open position. a closingstrategy is the sell counterpart to
the systems buy, but note both (systems and a closingstrategy) define
two signals. the first signal applies to "long’ positions, the second to
’short’ positions.

135 positional value substitution — sys-sig-indic
arguments

a sys-sig-indic-desc may have parameters that specify values to be used.
within a sys-sig-indic-desc whitespace is used to delimit these arguments
from each other and from the sys-sig-indic name.

in addition the alias provisions allow for numbered parameter substitution.
for details on system and object aliases see GT /Docs/object aliases.pod
and GT::Tools.

sys-sig-indic, for the most part, have predefined default arguments that
will be used in the absence of user provided values.

there isn’t an easy way to get the number of and defaults values of ar-
guments supported by a particular sys-sig-indic short of reading the perl

145

code for the sys-sig-indic (look for @DEFAULT _ ARGS). however, the
appropriate evaluation script display *.pl can be used with advantage to
see the default args as well as how any user passed args are applied. the
standard output from those scripts will show the values used.

when an indicator uses a prices value token (one of OPEN, HIGH, LOW,
CLOSE, or VOLUME) the usual default is CLOSE (or VOLUME) as
appropriate for the indicator. to alter that indicators prices value token
the entire prices sys-sig-indic description must be embedded within the
outer sys-sig-indic. in addition, in most cases the prices argument follows
other arguments. it isn’t possible (at least i’ve yet to determine how)
to use earlier defaults and change a subsequent argument value without
entering all the earlier arguments explicitly. take simple moving average
{ I:SMA } for example:

{ I:SMA } defaults to { I:SMA 50 { I:Prices CLOSE } }

in order to change the default prices value token from CLOSE to OPEN
you must write the indic-desc in the expanded form:

{ I:SMA 50 { I:Prices OPEN } }

yep, that’s the way it works.

136 indicator description (indic-desc) — de-
fine an indicator

an indicator is a mathematical calculation based on a securities price
and/or volume, or possibly some other numeric value associated with a
security or company, shares outstanding for example.

examples of indic-desc:

:Prices LOW }
:Prices VOLUME }
:SMA }

:EMA }

A m A A
H H H H

-

:BOL 40 1.9 }
:BOL 40 1.9 { I:Prices HIGH } }

-
—

in gt, an indicator is a series of data values for each bar (time period)
in the window of time being analyzed. the indicator will have at least
one value per bar, but may have many more. by default an indicators
principle value is the first value returned. except for display indicator.pl,

146

which will output all values, this first value will be the value used when the
indicator is listed in a sys-sig-indic-desc without a numeric value indicator.
say what!?

ok, indicators that have multiple values can be identified by appending a
slash '/’ and a number corresponding to the indicator value desired to the
indicator name as a means to designate the value of interest. the numbers
start with 1 the default value and increase by one for each subsequent
value. by convention the code /99 is used to indicate all values are to be
returned.

'indicator_name/number’ syntax examples:

:AROON/3 }

:BOL/3 }

:ADX/2 }

:ST0/4 }

:HilbertPeriod/10 }

:Chandelier/1 } # identical to { I:Chandelier }

P U U U U Uy
H HHH H H

{ L:Prices } is completely different. it will only return one value at a time,
by default it is CLOSE or LAST. furthermore { I:Prices } does not use
the indic/number encoding, instead using a 'name’ argument. the names
arguments are case insensitive:

OPEN | FIRST
HIGH

LOW

CLOSE | LAST
VOLUME

DATE

incidentally, { I:Prices DATE } is useful if you want the timeframe adjusted
date string that corresponds to the time period index.

to reiterate — { Lindic } will return one value per bar, and it is, by de-
fault, the first value defined by that indicator. in other words { Liindic/1
}. by convention the first indicator value should be the value logically as-
sociated with the indicator name, but there isn’t any way to enforce that
convention. in many cases gt indicators have multiple values that include
oscillator values along with other values that relate to that indicator. to
be sure what values are available from a given indicator read the pod, then
the code.

the sys-sig-indic devel /evaluation apps display _indicator.pl, display _signal.pl,
and display _system.pl are useful in getting valid run-time default values

and the other argument for the specified sys-sig-indic desc without having
to read perl code.

147

% display_indicator.pl I:AROON T | head

display_indicator.pl: interval: 2457 .. 2657

Indicator I:AROON has 3 values ... all values selected
I:ARO0ON/1 <=> AroonUp[25, { I:Prices HIGH}, { I:Prices LOW}]
I:AROON/2 <=> AroonDown[25, { I:Prices HIGH}, { I:Prices LOW}]
I:AROON/3 <=> AroonOsc[25, { I:Prices HIGH}, { I:Prices LOW}]

timeframe day, time periods 2457 .. 2657
Calculating all 3 indicators ...
AroonUp[25, { I:Prices HIGH}, { I:Prices LOW}][2008-10-03] = 8.0000
AroonDown[25, { I:Prices HIGH}, { I:Prices LOW}][2008-10-03] = 92.0000
AroonOsc[25, { I:Prices HIGH}, { I:Prices LOW}][2008-10-03] = -84

137 signal description (sig-desc) — define a
signal

signals are binary values (e.g. true/false, yes/no) that are used to trigger
trading system actions (orders). a signal is a data series with a discrete
value for each bar in the time period over the time being analyzed.

signal descriptions (sig-desc) are similar to indicator descriptions with ar-
guments (positional value substitution). note a signal may also have mul-
tiple signal values. this is unusual, but something to be aware of (refer to
S:Swing:Trend, S:Swing:TrendEnding, S:Trend:HilbertChannelBreakout and
others).

sig-desc look very much like indic-desc, here are some examples

{ Signals::Generic::CrossOverUp {I:BB0} {I:Generic::Eval 1.0} }
{ S:Generic:Above {I:Prices CLOSE} {I:BOL/2 20 2.0} }
{ S:Generic:Increase {I:ADX} }

using the available boolean logic signals one can construct some fairly
complex signal descriptions.

{ S:G:And \
{S:G:CrossOverUp {I:SMA 3} {I:SMA 23}} \
{S:G:Increase {I:ADX}} \

}

{S:G:And \
{S:G:0r \
{S:G:And \
{S:G:Above {I:G:PeriodAgo 4 {I:ST0/3 3 2 2 2}} 80} \
{S:G:Above {I:G:PeriodAgo 4} {I:G:PeriodAgo 4 {I:SMA 50}}} \

148

A
{S:G:And \
{S:G:Below {I:G:PeriodAgo 4 {I:ST0/3 3 2 2 2}} 20} \
{S:G:Below {I:G:PeriodAgo 4} {I:G:PeriodAgo 4 {I:SMA 50}}} \
A
I\
{S:G:Above {I:Prices HIGH} {I:G:PeriodAgo 4 {I:Prices HIGH}}} \
}

use script app display signal.pl to aid you in the development, debugging
and proofing of complex signal descriptions.

138 systems description (sys-desc) — define a
systems

a gt sys-desc defines two signals, the first generates an order to (poten-
tially) open a ’long’ position, the second generates an order to (poten-
tially) open a ’short’ position. these are expressly not buys and sells, but
orders to (potentially) enter into a new position either on the ’long’ or the
'short’ side of a trade. depending on other trading system components
(tradefilters, orderfactory and moneymanagers) these orders may not be
fulfilled. positions once opened are managed by the PortfolioManager via
one or more CloseStrategy trading system component. the second signal,
if omitted will default to always false

--statement validation required--

the first signal must always be present. you can disabled either signal
using this sig-desc:

{ S:G:False }

note that is one of the two required sig-desc within a sys-desc.

gt has a couple predefined (hardcoded) systems:

{ SY:TTS } # initial attempt to imitate turtle trade
{ SY:TFS } # trend following system
{ SY:Stochastic } # stochastic system

see GT/Systems/ for the rest

the usual arguments and embedded sys-sig-indic-desc arguments apply to
sig-desc.

149

{ SY:Stochastic 12
{ SY:TFS 20 7 }

3451}

using relatively complex sys-sig-indic-desc you can formulate much more

interesting sig-desc:

{ SY:Generic \

{ S:Generic:Above \
{I:Prices HIGH } {I:Generic:MaxInPeriod #1 {I:Prices CLOSE}} \

A\

{ S:Generic:Below \
{I:Prices LOW } {I:Generic:MinInPeriod #1 {I:Prices CLOSE}} \

LA\
}

{ SY:Generic \
{S:G:And \
{S:G:0r \
{S:G:And \
{S:G:Above
{S:G:Above
AN
{S:G:And \
{S:G:Below
{S:G:Below
J AN
\
{S:G:And \
{S:G:0r \
{S:G:And \
{S:G:Above
{S:G:Above
J AN
{S:G:And \
{S:G:Below
{S:G:Below
J AN
L AN

{I:G:PeriodAgo
{I:G:PeriodAgo

{I:G:PeriodAgo
{I:G:PeriodAgo

}
{S:G:Above {I:Prices HIGH} {I

{I:G:PeriodAgo
{I:G:PeriodAgo

{I:G:PeriodAgo
{I:G:PeriodAgo

4 {I:ST0/3 3 2 2 2}} 80} \
4} {I:G:PeriodAgo 4 {I:SMA 50}}} \

4 {I1:ST0/3 3 2 2 2}} 20} \
4} {I:G:PeriodAgo 4 {I:SMA 50}}} \

:G:PeriodAgo 4 {I:Prices HIGH}}}}

4 {I1:ST0/3 3 2 2 2}} 80} \
4} {I:G:PeriodAgo 4 {I:SMA 50}}} \

4 {I:ST0/3 3 2 2 2}} 20} \
4} {I:G:PeriodAgo 4 {I:SMA 50}}} \

{S:G:Below {I:Prices LOW} {I:G:PeriodAgo 4 {I:Prices LOW}}}} \

150

139 trading sys description — define a set of
trading system components

sig-sys-desc are used to specify a set of properties and parameters to be
used by gt to perform the technical analysis desired. it may encompass
one or more components of an analysis system. they are composed of the
items described below. see sig-sys-desc examples above.

supported abbreviations (not listed elsewhere): Generic = G: Signals =
S: Indicators = I:

140 trading system components — parts of a
system

GT/<directory> abbreviation
Systems SY:
OrderFactory OF:
MoneyManagement + MM:
tradeFilters + TF:
CloseStrategy + CS:
Brokers <none>

see directories for details on the elements of that component

components of a systems description are separated by vertical bars ("|").
components marked + above allow multiple elements of that component.

yet more sys-desc examples:

System:ADX 30 | TradeFilters:LongOnly | MoneyManagement :FixedSum
same as above using abbreviations

SY:ADX 30 | TF:LongOnly | MM:FixedSum
sig-sys-desc examples:

SY:SMA 2 3 4 | TF:AcceptAll
the following logical line group is effectively commented out

#SY:SMA 10 20 200 \
| TF:AcceptAll

151

141 SEE ALSO display indicator.pl, display signal.pl,
display system.pl, GT/Docs/how to spec+debug a system
GT /Docs/object aliases.pod scan.pl, backtest.pl,

gt file.pod, GT::Tools, GT::Graphics::Tools, and

the pod for individual system, signal and indi-

cators

152

142 how to create and debug a gt system

most of this material is available in various places in the gt code and
documentation base. pulling it together here is an attempt to aid first
time and more experienced users in the finer points of gt use.

objective — help GT users with trading systems

this file is targeted to both budding as well as seasoned (e.g. graybeards)
GT users. the intent is to gather sage wisdom and experience in the use
of gt primarily in the area of system description development, evaluation,
troubleshooting, proofing and ultimately use.

contributions, corrections, enhancements welcome

scope — how to create and debug a gt system

you are fooling yourself trying to get something out of gt if you don’t
spend some time with your favorite pod reading tool going hand-over-
hand with the gt application scripts as well as some of the informational
documentation. then you will need to review the components that can be
included as part of a gt trading system.

here is a reading list to start with

gt_sig-sys-desc.pod
gt_files.pod
backtest.pl
GT/SystemManager.pm
GT/CloseStrategy.pm
GT/PortfolioManager.pm
GT/TradeFilters.pm
GT/0OrderFactory.pm
GT/MoneyManagement . pm

if you are intending to write new perl code (or modify existing code) you
will need to study Writing an_Indicator Cookbook.pdf in GT/Docs,
along with some of the existing modules to see how things are done.

document abbreviations

fixme looking for user input

gt genius trader

-tbs- to be supplied

(verify) statement needs to be verified

153

143 table of contents

front matter
objective
scope
document abbreviations
1.0 gt trading systems
1.1 gt trading system examples
1.2 trading system components
1.2.1 Systems
OrderFactory
TradeFilter
MoneyManager
CloseStrategy
1.2.6 Broker
2.0 gt sig-indic descriptions
2.1 Indicators
2.2 Signals
3.0 aliases
3.1 global
3.2 object
4.0 gt application scripts
4.1 gt securities analysis tools
4.1.1 graphic.pl
scan.pl (fixme)
backtest.pl, backtest_many.pl, backtest_multi.pl
4.1.3.1 backtest.pl
4.1.3.2 backtest_many.pl
4.1.3.3 backtest_multi.pl
manage_portfolio.pl
analyze_backtest.pl (fixme)
anashell.pl (fixme)
4.1.7 select_combination.pl (fixme)
4.2 gt development and test tools
4.2.1 display_indicator.pl
4.2.2 display_signal.pl
4.2.3 display_system.pl (just mine?)
5.0 developing gt systems
.1 indicators
signals
systems
backtest.pl
.1 backtest.pl examples
.2 you’ve got the code, use it
.3 self hacking guidance

e
NN NN
[S2 I SOV V]

4.1.2
4.1.3

NN
=
o o b

oo oo ol o1 O
NN N

154

6.0 new code development

144 1.0 gt trading systems

gt trading systems are described in terms of trading system components,
signals and indicators.

gt trading systems are formed using orders and positions. orders may not
result in a position being entered into. once a position is opened (entered
into) the portfolio manager takes control of it.

the portfolio manager includes trading system components tradefilter (ver-
ify), orderfactory (verify), closestrategy, moneymanager,

trading systems are formed by combining gt trading system component
descriptions together separating each with the vertical bar (pipe) (|) sym-
bol

1.1 gt trading system examples

-tbs-

1.2 trading system components
gt defines these trading system components

1. 2.1 Systems: — abbreviation SY

each gt trading system requires a systems (yes it is plural) that defines
two signals that, when triggered, yield an order to open a position. gt
defines two types of positions, long and short, and manages each type
separately, hence the need for two separate signals. the first signal
is for opening a new long position, the second signal is for opening a
new short position.

whether or not an order results in a position being opened depends
on a number of other trade system components defined below.

2. 2.2 OrderFactory: — abbreviation OF:

-tbs-

multiple orderfactory are supported per trading system (verify)
3. 2.3 TradeFilter: — abbreviation TF:

restricts the types of trades allowed.

multiple tradefilters are supported per trading system

155

4.

2.4 MoneyManager: — abbreviation MM:

defines how gt manages investments. affects share quantities allo-
cated to a given order

multiple moneymanagers are supported trading system, each will be
evaluated in the sequence defined. the resulting order share quantity
will be the quantity that remains after all moneymanagers have been
polled.

2.5 CloseStrategy: — abbreviation CS:

because each type of position (long or short) is managed separately a
closestrategy must also specify two signals that trigger management
activity of each position type.

the first signal will generate orders that relate to an existing long
position, the second signal will generate orders for an existing short
position.

closestrategy, really a misnomer for position management, includes
complete and partial position closing as well as reinvesting (adding
to) existing positions.

multiple closestrategies are supported per trading system. each is
evaluated in the sequence defined, the resulting order, if any will be
applied to the appropriate existing position.

verify this verify this verify this

orders that issue from closestrategies are not subject to any of the
trading filters (e.g. orderfactory, tradefilter or moneymanager) de-
fined in the trading system but are applied immediately. (i’'m think-
ing that orderfactories and moneymanagers do in fact affect position
manager orders)

verify this verify this verify this

2.6 Broker: — abbreviation none
a broker is used to apply trading costs to each trade

a broker isn’t a full fledged gt trading system component since it
cannot be defined as a component in a system description.

specify a broker using the command line option
--broker broker_name argument(s)

or by setting the gt configuration key "Brokers::module" to the de-
sired broker name and any arguments.

145 2.0 gt sig-indic descriptions

-tbs-

156

2.1 Indicators: — abbreviation I:

refer to pod file GT /Docs/gt _sig-sys-desc.pod

2.2 Signals: — abbreviation S:

refer to pod file GT /Docs/gt _sig-sys-desc.pod

here is something i just (re)discovered, it might (or might not) be in the
referenced pod, but it is very very significant; if it is ignored you will
probably get hard to interpret results and troubleshooting will be painful
at best.

signals, just like indicators can have more than a signal output. it’s un-
common, but there are a couple. the significance is when you use one of
these multi-name signals as an element in a larger sys-sig-indic descrip-
tion to be sure to specify the signal value selector (e.g. the /#) that you
want. by default gt will use the first one unless otherwise specified (ver-
ify). except, possibly, when the signal is being used as a generic systems?
(verify)

as of this writing these are the multi-value gt signals and the value names
in order. numbered parameter arguments are not shown:

Signals:Swing:Trend TrendUp, TrendDown
Signals:Swing:TrendEnding TrendUpEnding, TrendDownEnding
Signals:Systems:MacdDiff MacdDiffHigh, MacdDiffLow
Signals:Trend:HilbertChannelBreakout HCBkUp, HCBkDown
Signals:Trend:TTT TTTUp, TTTDown

146 3.0 aliases

two forms of aliases are supported by gt. both are implemented in package
GT::Tools. refer to that packages’ pod for the most current implementa-
tion details.

3.2 global

refer to pod file GT /Docs/object_aliases.pod

3.2 object

refer to pod file GT /Docs/object_aliases.pod

157

147 4.0 gt application scripts

gt provides perl application scripts in the Scripts directory. these scripts
combine the methods and functions found in the gt packages (files in the
GT directory hierarchy) in ways to solve, implement or 7?7 a particular
aspect of marketable securities technical analysis, manage a portfolio of
stock holdings, and to evaluate gt signals, indicators and systems.

in general terms there are two categories of tools (the scripts): 1) those
specifically intended for technical analysis of a security and 2) those that
are most useful in terms of gt system development and validation tools.
this distinction isn’t hard and fast, but more of a general observation,
guidance about what to use the scripts for.

4.1 gt securities analysis tools
-tbs-

1. 1.1 graphic.pl
see the script pod for all the gory details.
used primarily as a traditional technical analysis charting tool. the
application takes directives consisting of signals, including a system
component signal set, as well as indicators and creates a traditional
technical analysis chart for the security specified.

can be used to visually depict operation of signals, indicators and
even the system component that can aid in their troubleshooting.
in order to use graphic.pl you will need to rtfm;
perldoc -t graphic.pl

2. 1.2 scan.pl

tool to scan a number of securities with (or against) a number of
system component signal sets (can be complete trading systems, but
only the system component signal set is evaluated) to see which se-
curities trigger which signals

perldoc -t scan.pl

also review perldoc -t GT/Docs/gt_files.pod for an all in one place
description of the file formats used by scan.pl

3. 1.3 backtest.pl, backtest many.pl, backtest multi.pl
three different variations on a traditional technical analysis tool that
evaluates the performance of a specified trading system over the prior
history of a specified securities trading data.
(i thought one of these provided for user specified programmatic
trading system parametric variation in an effort to optimize the sys-
tem for the given security and its trading characteristics. but is don’t
see its use documented in my fast look-see)

158

4. 1.3.1 backtest.pl

a traditional technical analysis backtesting tool that uses a specified
trading system over the prior history of a specified securities trading
data and analyzes the trading systems financial performance against
a simple buy-and-hold strategy over the same time period.

output includes optional html formatted text or simple ascii text
plus optionally a very simple graphic depiction of the trading system
compared to the buy-and-hold strategy.

the html output option includes provision to embed the graphic image
within the html page.
5. 1.3.2 backtest _many.pl
somebody fixme
6. 1.3.3 backtest multi.pl
somebody fixme
7. 1.4 manage portfolio.pl

creates, maintains and analyzes your real (or imaginary) securities
investment portfolio. a portfolio is a history of all transactions (orders
and positions) that have taken place in the portfolio.

takes input in the various forms including command line options,
simple text files, beancounter database portfolio table

stored as a gzipped xml file.
8. real portfolio management with manage portfolio.pl

by creating and maintaining a gt portfolio your positions can be
marked on the graphic.pl charts using this graphic directive:

--add=PortfolioPositions(./bc_pf,show)

to update your bc_pf portfolio (i use bc_pf to indicate it is my
beancounter porfolio, you can use any filename)

% manage_portfolio.pl bc_pf file ./trades_‘dex‘.scott2gt

where the input file ./trades ‘dex‘.scott2gt has the appropriate for-
mat (refer to manage portfolio.pl pod for details)

the command dex is simply /usr/bin/date '+%d%b%y’ | tr "[A-Z]
’[a—Z],

trades are pasted into ./trades ‘dex‘ by manually scraping them off
the brokers web page. that file is post-processed with a fairly trivial,
but customized perl script that extracts the salient facts and arranges
them to suit manage portfolio.pl.

to get a report on your portfolios’ positions:
% manage_portfolio.pl bc_pf report positions

to get a report on your portfolios’ history:

159

% manage_portfolio.pl bc_pf report history
the report options performance and analysis need work if you can
help please let the gt devel list know.

9. 1.5 analyze backtest.pl
somebody fixme

10. 1.6 anashell.pl
somebody fixme

11. 1.7 select combination.pl
somebody fixme

4.2 gt development and test tools
-tbs-

1. 2.1 display _indicator.pl
used primarily to develop and debug complex indicator descriptions.
also useful to validate new or modified indicator packages
perldoc -t display indicator.pl

2. 2.2 display _signal.pl
used primarily to develop and debug complex signal descriptions.
also useful to validate new or modified signal packages
perldoc -t display _signal.pl

3. 2.3 display _system.pl (just mine?)

used primarily to develop and debug complex the two signals gener-
ated by the system component description.

perldoc -t display system.pl

148 5.0 developing gt systems

evaluating. proving, troubleshooting gt systems and other complex gt
sig-indic descriptions

5.1 indicators

manually evaluate indicator results with display indicator.pl.

this application will often show conditions like uninitialized values that
can be masked when encountered in graphic.pl or backtest.pl.

compare a modified version of an indicator with an unmodified version

160

gdiff -u ¢! display_indicator.pl --sta 1jan09 --end 1may09 I:SnR t¢ \
¢! display_indicator.pl --sta 1jan09 --end 1may09 I:SnR_h t°¢

the command ! is from ’unix power tools’. it turns it’s input into a file
and puts that filename in on the command line in its place.

and visually with graphic.pl

notice the same curve is plotted using the modified (I:SnR_h) indicator
and the unmodified version with different colors to highlight any anoma-
lous behavior.

graphic.pl --start 2008-10-01 --end 1may09 -timeframe day \
--add=curve’(I:SnR/2, orange)’ --add=curve’(I:SnR/1, darkgreen)’ \
--add=curve’(I:SnR_h/2, blue)’ --add=curve’(I:SnR_h/1, red)’ \

T >/tmp/T8mon.png

it is also important to evaluate the result of passing different arguments
to a newly developed indicator. in this instance we are checking that
the indicator can handle the four arguments (e.g. 10 7 {I:Prices LOW}
{I:Prices HIGH})

graphic.pl --start 2008-10-01 --end 1may09 -timeframe day \
—-add=curve’(I:SnR_h/2, blue)’ \
--add=curve’(I:SnR_h/2 10 7 {I:Prices LOW} {I:Prices HIGH}, green)’ \
--add=curve’(I:SnR_h/1, red)’ \
--add=curve’(I:SnR_h/1 10 7 {I:Prices LOW} {I:Prices HIGH}, black)’ \
T >/tmp/T8mon.png

when developing a new indicator one typically has an expected result in
mind, furthermore, the default arguments are normally set to standard
technical analysis values. this can often lead to ’code fixes’ that yield
the expectations when there are more fundamental aspects of the problem
being overlooked. to avoid getting trapped in this condition it’s important,
and often very helpful to expose subtle coding errors and omissions by
running test cases with a range of each arguments values. at the very
least this will help ensure the code correctly handles arguments other than
the hardcoded defaults and has reasonable protection against out-of-range
argument values.

5.2 signals

-tbs-

manually evaluate signal generation with display signal.pl and visually
with graphic.pl

-tbs-

161

5.3 systems

mark system long/short triggers with graphic.pl
-tbs-

5.4 backtest.pl

when debugging or trying to evaluate a system try limiting and isolat-
ing individual trading system components using the techniques and the
trading component specs listed below. the results can be useful to illumi-
nate problems with the system being evaluated and to identify the trading
component(s) that need to be adjusted.

a) isolate trades

-tra LongOnly
-tra ShortOnly

b) limit trades
-tra OneTrade
c¢) limit position entry/exit signals

define only one well understood position close signal
--closestrategy=’NeverClose’
--closestrategy=’LimitPeriodInTheMarket 10’

d) graph the results

-display-trades -graph graphs/bt_code.png
set the file name (argument to -graph) to whatever
makes sense to you

5.4.1 backtest.pl examples

instead of

./backtest.pl -tim day -init 100000 -disp -gr graphs/a_bt_jpm.png \
--start 2002-07-01 --end 2004-01-01 \
-sy ’Generic
{S:G:And
{ S:G:Below {I:Prices LOW} {I:G:Eval { I:SnR_h/1 } + 0.06 } }
{ S:G:Above {I:Prices LOW} { I:SnR_h/1 } }
}
{ S:G:False }’ \
-clo ’LimitPeriodInTheMarket 5’ \
JPM

162

use

./backtest.pl -tim day -init 100000 -disp -gr graphs/a_bt_jpm.png \
--start 2002-07-01 --end 2004-01-01 \
-sy ’Generic
{S:G:And
{ S:G:Below {I:Prices LOW} {I:G:Eval { I:SnR_h/1 } + 0.06 } }
{ S:G:Above {I:Prices LOW} { I:SnR_h/1 } }
}

{ S:G:False }’ \
-mo ’Basic’ \
-tra ’LongOnly’ \
-tra ’0OneTrade’ \
--closestrategy=’NeverClose’ \
JPM

examples of other backtests.pl commands

./backtest.pl --full \

--system="Generic {S:G:CrossOverUp {I:SMA 20} {I:SMA 60}} \
{S:G: :CrossOverDown {I:SMA 20} {I:SMA 60}}" \
--closestrategy="Stop: :KeepRunUp" \
--moneymanagement="FixedShares" \

--tradefilter="LongOnly" \

--orderfactory="ClosedToClose" \
--broker="InteractiveBrokers" \

CCRT

./backtest.pl --start 2008-01-02 --end 2009-04-30 \
--system="Generic {S:G:CrossOverUp {I:SMA 20} {I:SMA 60}} \
{S:G:CrossOverDown {I:SMA 20} {I:SMA 60}}" \
--closestrategy="Stop: :KeepRunUp" \
--moneymanagement="FixedShares" \

--tradefilter="LongOnly" \

--orderfactory="ClosedToClose" \
--broker="InteractiveBrokers" \

CCRT

backtest.pl --timeframe week --start 1apr0O8 --end 1may09 \
"’ ¢cat buysell-signal | perl -ne ’print $_ unless m/~\sx#.*$|"\sx$/> " \
MIDD

backtest.pl --timeframe week --start 1apr08 --end 1may09 \
"fcat buysell-signal‘" \
MIDD

163

backtest.pl -tim day -init 100000 -disp -gr graphs/bt_aapl.png \
-sy ’TFS 15 7’ -mo ’Basic’ \

-mo ’ShareMultiples 100 2’ \

-clo ’Reinvest:InWinners 2’ \

-clo ’ChannelBreakout { I:SMA 80 } { I:SMA 80 1}’ \

-tra LongOnly \

-tra OneTrade \

AAPL

5.4.2 you’ve got the code, use it

make a copy of the package file 'before’ you start hacking on it. then hack
away on the copy.

hack in
’use Data::Dumper;’
and then sprinkle
’print STDERR Dumper data_object;’
statements around and see what comes out.
you might want to send this output to a file since it can get
copious quickly.

Data::Dumper is recommended because you don’t have to be concerned

with the data type being printed. it handles scalars (simple variables),
arrays, and complex gt data objects with ease.

5.4.3 self hacking guidance

with package file GT /Indicator/SnR_ h.pm under active development add
these perl statements towards the top of the file:

our $debug = 0;
$debug 1; # enable debug outputs

now you can add print statements like these to monitor internal variable
without using a debugging perl

if ($debug > 1) {
my $ioff = $self->{’args’}->get_arg_names(2) + 1;
print STDERR "\n";
print STDERR "minl[$i - $ioff] $mini\n";
print STDERR "min2[$i] $min2\n";
print STDERR "\n";
print STDERR "max1l[$i - $ioff] maxi\n";

164

print STDERR "max2[$i] $max2\n";
print STDERR "\n";
}

in addition, you can easily disable the debugging output by commenting
out the $debug = 1; # enable debug outputs line but leave in most of
your debug bits to share/discuss or retain for later.

also note that you can easily arrange for various levels of debug output
using various the comparison conditional values

if ($debug) { ...
if ($debug >=2) { ...

the more adventurous might do things more like this, but probably a lot
smarter and better than this

my $BIT1 = 0x01; my $BIMSK = ~0x01;
my $BIT2 = 0x02; my $B2MSK = ~0x02;
my $BIT3 = 0x04; my $B3MSK = ~0x04;
my $BIT4 = 0x08; my $B4MSK = ~0x08;

my $debug = $BIT2 + $BIT4;
if ($debug & $B4MSK) { ...
finally use a bash command like

$ display_indicator.pl -short 35 --start 1jan09 --end 1may09 \
I:SnR_h T > /tmp/snr.out 2>&1

or for csh

% display_indicator.pl -short 35 --start 1jan09 --end 1may09 \
I:SnR_h T >& /tmp/snr.out

with instrumented code you need to keep separate stdout and stderr for
scripts that write image files to stdout like graphic.pl.

for this use a bash command like
$ graphic.pl -file example.gconf ENS 1> ENS.png 2> example.out
or for csh

% (graphic.pl -file example.gconf ENS > ENS.png) >& example.out

165

6.0 new indicator and signal code development

refer to Writing an_Indicator Cookbook.pdf (GT /Docs/Writing an Indicator Cookbook.pdf),
the seminal work on how to develop new gt indicators and by extension
signals.

while it may still seem unnecessary when initially developing a brand new
indicator or signal, the statement

return if (! $self->check_dependencies($calc, $i));
or the preferred form
return unless $self->check_dependencies($calc, $i);

is how an indicator or signal gets ’set up’. (if anyone can improve on the
terminology here that would be great) without this statement you can
expect the indicator or signal will return nothing. what ’set up’ means is
everything is solved if it isn’t already. if the necessary dependencies cannot
be solved the indicator or signal will probably fail (without raising an
exception, either methinks, and that is unfortunate). if you’re interested
in how this all works read the code, it’s in GT /Dependency.pm, and if you
can figure a way to raise an exception in appropriate circumstances please
do so and contribute the code.

166

149 object aliases

object aliases are user defined aliases, shorter names for commonly used
gt sys-sig-indic descriptions. object aliases can be used in any of the
gt sys-sig-indic descriptions, as well as in gt trading system component
specifications like CloseStrategy, TradeFilters and OrderFactory. it isn’t
clear whether an object alias may be used to define multiple components
of a trading system (e.g. contain a connecting ’|’ symbol), but the code
commentary, and pod implies that is not their intended purpose. for that
it’s probably just wiser to use a system alias (e.g. global alias) (refer to
-tbd-).

the intention of some of the ras version changes in various object aliases
handling methods is to not permit object aliases to define multiple system
components (e.g. contain a ’|” symbol). however, sufficient code may not
be in place to guarantee that attempts to do that will always be detected
and flagged with a useful error message.

so don’t do it. use a system alias (global alias) for that purpose.

NB: many of the object alias file locations and some object alias file pro-
cessing attributes described here may only be implemented in specific ras
hack versions of the gt toolkit. see the section ’some important notes’
for some more details. contact ras directly (or start a devel list message
thread) if any of these features are needed in your particular gt use model.

object aliases — @I::my object alias

to use an object alias in a gt sys-sig-indic description you prepend to the
object aliases name a string that starts with the '@’ symbol, then add the
type designator ($kind) (e.g. Indicator, Signal, etc) followed by one or
two colons ’:” and then finally insert the name of the object alias itself.
it’s recommended that you use the standard gt sys-sig-indic abbreviations
in place of the type designators (e.g. $kind) (e.g. Indicators, Signals,
Systems, etc) (see GT::Tools pod). for example, if you have an object
alias named my mean and it is an indicator type ($kind is indicator) it
would appear in a gt sys-sig-indic description as:

@I :my_mean
or possibly @I::my_mean

or @Indicators::my_mean (not recommended)

more examples of object aliases definition as well as usage will be presented
as the topic is developed.

167

150 object alias files

object alias files are simple text files that specify an object alias and it’s
value. in a perl language context these files are configuration files in that
they have a key-value pair record structure.

there are two different formats that object aliases come in. which form
is used to define the object aliases depends on the particular file location
(pathname) the object aliases is defined in. regardless of the object alias
format type the actual value of the object alias remains the same, but the
key string varies depending on the file location.

the files (locations) that can define an object aliases are
$HOME/ .gt/options
and

files in the directory $HOME/.gt/aliases named in accordance
with the $kind string (see below)

and/or the files identified by the value of gt config keys
of the form "Path::Aliases::$kind" (case insensitive),
defined in the users $HOME/.gt/options file.

in the absence of any explicit directive, additional (global) object alias
files will be searched for in the gt install directory — generally defined as
the directory just above the current working directory. because most gt
users install gt and then cd to Scripts to use the gt toolkit to perform ta
analyses, the typical cwd is the gt Scripts dir (this may not apply when
using the cpan branch, or some other installation model). in order to
support all (most) other installation models there are a number of explicit
ways to specify alternate paths for these global or shared object alias file
locations as described in the paragraph ’object alias file locations and file
names’ below.

the variable $kind assumes each of the following strings during object alias
processing and file loading:

signals
indicators
systems
closestrategy
moneymanagement
tradefilters
orderfactory
analyzers

168

these $kind strings have no uniqueness abbreviations nor any mis-spelling
tolerance, thus ’indicator’, ’signal’ and ’system’ will all fail.

the value of $kind, when used as a key (left hand side of the key-value
pair), it is not case sensitive but when the $kind string is used in a value
context (right hand side of the key-value pair) it is case sensitive and by
default will be lower case string as listed above.

151 object alias formats

there are two different forms of object alias formats depending on the file
in which the object alias is defined.

object alias format a

this form of object aliases can only be used in the $HOME/.gt /options
file.

"Aliases::$kind::"<object_alias> <whitespace> { <object_alias specification> }
specific format details

the string "Aliases::$kind::" must be prepended (without the quotes)
to the object_alias name (<object_alias>).

the object_alias name is any proper perl string but it should
avoid these problematic characters ’@#{}[]+-*/’.

the resulting string (e.g. Aliases::$kind::object_alias_name)

is used as a gt config hash key: as a consequence the key string
will be stored lower case, but is case insensitive.

the value of the key will be unaltered and will be case sensitive.

the key string (e.g. Aliases::$kind::object_alias_name) is
separated by whitespace from the object alias <object_alias specification>.

the object alias definition <object_alias specification>
is enclosed in curly braces ’{...}’.
(statement should be validated and verified)

the object alias definition <object_alias specification> value

will consist of the remaining characters on the current logical

line (if continuation and comment line support is present in the

gt toolkit version for the $HOME/.gt/options file the logical line
ends when a line is encountered that doesn’t end with a ’\’ character
immediately before the newline character).

169

object alias format a examples

here are working examples — valid only in your SHOME/.gt /options file

Aliases::Indicators: :MyMean_opt { I:Generic:Eval (#1 + #2) / 2 }
Aliases::Indicators: :PVOL_opt {I:Prices VOLUME}

example use: display_indicator.pl @I:MyMean_opt GOOG ’50 {I:RSI}’

display_indicator.pl @I:pvol_opt GOOG

object alias format b

the second form of an object alias format can only be used in object
alias files where the alias type information (i.e. $kind) is derived from the
files pathname. this object alias format omitd the string " Aliases::$kind::"
from the object alias name (<object alias>). the object alias processing
and storage remains the same as previously described so the preceeding
formatting details apply with this minor variation:

the object alias definition <object_alias specification> value

will consist of the remaining characters on the current logical

line (if continuation and comment line support is present in the

gt toolkit version for object alias files the logical line

ends when a line is encountered that doesn’t end with a ’\’ character
immediately before the newline character).

the type b object alias format:
<object_alias> <whitespace> { <object_alias specification> }

format b applies to object aliases files (private files) named based on the
$kind strings in the directory SHOME/.gt/aliases or in other, possibly
shared, directories as will be described later.

object alias format b examples

the examples below are of $kind indicator, so they would appear in a file
named indicator in an aliases directory at SHOME/.gt/ or at some other
directory path in the file system or in an absolute pathname identified via
the key "Path::Aliases::Indicator".

MyMean_gbl { I:Generic:Eval (#1 + #2) / 2 }
PHI_gbl {I:Prices VOLUME}

PO {I:Prices OPEN}

PH {I:Prices HIGH}

170

Pl {I:Prices LOW}

PC {I:Prices CLOSE}
PV {I:Prices VOLUME}
vol {I:Prices VOLUME}

the following examples are of $kind signals, thus they might appear in a
file named $HOME/.gt/aliases/signals.

3Xoverlong { S:G:0r { S:G:And {S:G:Above #1 #3} {S:G:CrossOverUp #2 #3} } { S:(
3Xovershort { S:G:0r \

{ S:G:And {S:G:Below #1 #3} {S:G:CrossOverDown #2 #3} } \
{ S:G:And {S:G:Below #2 #3} {S:G:CrossOverDown #1 #3} } \

}
3EMAlong { ©S:3Xoverlong {I:EMA #1} {I:EMA #2} {I:EMA #3} }
3EMAshort { @S:3Xovershort {I:EMA #1} {I:EMA #2} {I:EMA #3} }

152 object alias file locations and file names

the gt system will look in multiple directories for object alias files. if the
paths (directories) do not exist or there are no appropriately named files
found in the directories gt will silently ignore the situation. negative con-
ditions will neither cause a warning nor an error, this can be problematic
or not depending ...

object alias files are sought in the file system in two places:

1. $SHOME/.gt/aliases. files therein must be named after $kind. this is
a fixed pathname and it cannot be altered. however the absense of the
directory SHOME/.gt /aliases will inhibit the reading and processing
of any user private object alias files.
note: alias files must be name after $kind (e.g. $kind takes on each of
these strings ’signals’, 'indicators’, ’systems’, ’closestrategy’, 'money-
management’, ’tradefilters’, ’orderfactory’, ’analyzers’) and must be
lower case (if your os/fs is case sensitive).
pathname examples: $HOME/.gt /aliases/signals SHOME/.gt /aliases/indicators
$HOME/ .gt/aliases/systems SHOME/.gt/aliases/ closestrategy

2. default global (possibly for shared) object aliases files. the location
and naming of this collection of object aliases files can be controlled
by each GT user via gt configuration key-values and/or an environ-
ment variable.
by default the directory for global (shared) object aliases is sought
in one of up to five locations, in priority order:

171

i) the value of multiple gt config keys "Path::Aliases::$kind".
this feature will override the pathname for each $kind global
object alias file, so a user may/must have a gt config key
for each $kind of object alias pathname set in this manner.

ii) the users value in gt config key "Path::Aliases::Shared".
iii) the users value in gt config key "GT::Root".

iv) the users environment variable "${GT_ROOT}".

v) one directory above the current working directory.

item i) overrides items ii) .. v) for $kind object aliases only.

items ii) .. v) are mutually exclusive — the value assigned by the
key sets the directory path where global (shared) object alias files of
$kind are sought. if no files are found or the directory does not exist
the condition is silently ignored.

items ii) .. v) apply to all shared object alias $kind files not over-
ridden by item 1i).

(the preceeding statement needs to be validated and verified)

each object alias file found via key-value pairs per items ii) .. v) must
be named one of the $kind strings (see above).

NB: the default $kind filenames are lower case, but if you elect to
change the default name via item i) whatever value is specified will
be used as the filename unchanged.

example assuming there is no explicit gt root setting (e.g. item v)
above) (pathname shown relative to current working directory)

../aliases/indicators
../aliases/systems
../aliases/signals
../aliases/closestrategy

same example with the gt root directory explicity set using a gt config
"GT::Root" key-value pair:

GT: :Root /usr/share/geniustrader
files with these pathnames will be sought:

/usr/share/geniustrader/aliases/indicators
/usr/share/geniustrader/aliases/systems
/usr/share/geniustrader/aliases/signals
/usr/share/geniustrader/aliases/closestrategy

similarly you can use gt config key "Path::Aliases::Shared" to set the
directory path in the case when "GT::Root" isn’t a suitable directory
for object alias files. "Path::Aliases::Shared" overrides "GT::Root".
gt config key "GT::Root" overrides envar "${GT_ROOT}". default

global location ’..” relative to cwd.

172

complete per user object aliases directory controls

if the default paths and file names (e.g. $kind) are unacceptable for some
reason, do not despair or attempt to change the code. you can easily
specify alternate paths and file names for the global object alias files using
the existing naming features.

this might be done to facilitate two or more users sharing object aliases
files. or it might be needed to support multiple sets of object aliases files
or whatever.

alternate paths are under full user control using the gt %conf option keys
"Path::Aliases::$kind" to establish new paths as well as the filenames used
for object alias files.

Path::Aliases::$kind /this/users/preferred/path/alias_file

will cause gt to search /this/users/preferred/path/ for the file named
‘alias__file’ hopefully containing type b $kind object aliases. if the file
or path does not exist it will be silently ignored. this is both a blessing
and a curse, depending ...

it is required that any key specified be in the set of $kind name strings
(see above) but the value for the key (e.g. the value of these keys is the
absolute pathname of the file containing $kind object aliases) is entirely
up to the user. the value will be case sensitive depending on your os/fs. it
is expected that the object aliases found at the path associated with the
$kind key be of type $kind. in other words, the file named by the value
of key Path::Aliases::Indicators should contain indicator aliases, and key
Path::Aliases::systems should contain system aliases.

by way of NEGATIVE example, while the following are operationally cor-
rect they are NOT recommended practice.

Path::Aliases::signals /home/shared/some_aliases
Path::Aliases::indicators /home/shared/objects
Path::Aliases::systems /etc/gtsys

Path::Aliases::closestrategy /cs

as shown, the user is free to define different directories as well as alternate
filenames for the global (shared) object alias files. the effect of putting
say signal object aliases in files expected to be indicators hasn’t been
evaluated, but the expected result is (or should be) that the signal alias
would simply not be found.

use suggestion: if you must have different directories object alias files, for
the sanity of your maintainers as well as your users, use $kind or filenames
that somehow relate to $kind where ever else you set the path.

in other words:

173

Path::Aliases::signals /home/shared/GT/signals
Path::Aliases::indicators /home/shared/devGT/indicators
Path::Aliases::systems /etc/systems
Path::Aliases::closestrategy /var/shared_GT_oa/closestrategy

pathname upper/lower case observations

the $kind filenames in dir tree $HOME/.gt /aliases will be lower case.
the default global $kind filenames will be lower case.

if you change the default $kind pathname using any of the config op-
tions ("Path::Aliases::$kind", "Path::Aliases::Shared", "GT::Root", or en-
var "${GT_ROOT} whatever pathnames you specify will be used without
change.

gt config option keys are always case insensitive and are stored lower case.

completely valid object alias files stored in an appropriate directory but
having a case conflict will be silently ignored. suggestion: avoid using
upper case pathnames.

153 other features

object aliases can include other object aliases

object aliases support recursion. this makes the combination of system
and object aliases a powerful and useful feature.

object aliases support numbered parameteric substitu-
tion

if an object alias specification includes arguments encoded with a hash "#’
followed by an integer (generally delimited with whitespace) the actual
argument value used for that parameter will be the value of the argument
that corresponds with the integer.

say what!?

as a fairly useless example say we define an indicator object alias
P {I:Prices #1}

when used in a sys-sig-indic the parameter that is represented by ’#1’
must be provided as the first argument to the sys-sig-indic. in the following
examples argument #1 is either LOW or VOLUME.

174

display_indicator.pl @I:P GOOG LOW
display_indicator.pl @I:P GOOG VOLUME

a more useful example is one defined earlier:
MyMean_gbl { I:Generic:Eval (#1 + #2) / 2 }
which can be used as follows:
display_indicator.pl @I:MyMean_gbl GOOG ’{I:Prices HIGH} {I:Prices LOW}’

in this case #1 has the value "{I:Prices HIGH}" and #2 "{I:Prices LOW}"

as an example of recursion (i think), object aliases

PH {I:Prices HIGH}
P1 {I:Prices LOW}

can be used as follows:

display_indicator.pl Q@I:MyMean_gbl GOOG @I:PH @I:P1

examples

For example, define these signal object aliases in your SHOME/.gt /aliases/signals
file

3Xover... is a generic crossover signal involving three lines
3Xoverlong { S:G:0r \

{ S:G:And {S:G:Above #1 #3} {S:G:CrossOverUp #2 #3} } \

{ S:G:And {S:G:Above #2 #3} {S:G:CrossOverUp #1 #3} } }

3Xovershort { S:G:0r \
{ S:G:And {S:G:Below #1 #3} {S:G:CrossOverDown #2 #3} } \
{ S:G:And {S:G:Below #2 #3} {S:G:CrossOverDown #1 #3} } }

3EMA... passes its arguments to and invokes 3Xover...
3EMAlong { @S:3Xoverlong {I:EMA #1} {I:EMA #2} {I:EMA #3} }

3EMAshort { @S:3Xovershort {I:EMA #1} {I:EMA #2} {I:EMA #3} }
with a (global) system alias (see -tbd-) named 3EMA defined in your

$HOME/ .gt/options file:

175

Aliases::Global: :3EMA SY:Generic \
{ @S:3EMAlong 60 90 120 } { @S:3EMAshort 60 90 120 }

you can evaluate initial positions using the aliased signals defined. note
however, the arguments are fixed.

with a similar system alias named 3EMA]] in your SHOME/.gt/options
file:

Aliases::Global: :3EMA[] SY:Generic \
{ ©S:3EMAlong #1 #2 #3 } { @S:3EMAshort #1 #2 #3 }

you can pass different arguments to the aliased signals using the numbered
parameter substitution feature. use this alias in a sys-sig-indic desc like

SY:3EMA[20 50 150]

include the square brackets [’ ’]” as shown and delimit the parameters
with whitespace.

and if you don’t want the parameter symmetry (e.g. using same args
for the long and short position triggers) you can redefine everything with
parameters numbered #1 to #6

Aliases::Global: :3EMA[] SY:Generic \
{ ©S:3EMAlong #1 #2 #3 } { @S:3EMAshort #4 #5 #6 }

and use a sys-sig-indic desc like SY:3EMA[20 50 150 15 40 120 |

some important notes:

1. it’s critical that the leading ’{’ is present in each object alias otherwise
the arguments don’t get fully substituted

2. continuation and comment lines for object alias files is supported only
with the ras versions of methods GT:Tools::resolve object alias and
GT:Conf::load. the current trunk version of GT::Conf::load performs
the initial object alias file reads internally but doesn’t handle contin-
uation or comment lines for them. also, the trunk version of method
GT:Conf::load is now technically broken (flawed): if called multiple
times, say to read an additional gt configuration file, object alias pro-
cessing will be repeated unnecessarily. finally, the current ras versions
of the modules GT:Tools and GT:Conf also diverge from the trunk
versions in other ways as well, so it isn’t a simple matter of updating
just these two modules.

3. blank lines and lines starting with # are ignored (possibly may apply
to ras versions only)

176

4. lines may contain a trailing comment provided there is whitespace
following the object alias definition and the comment character ’#’.
(possibly may apply to ras versions only)

177

154 GT::Eval

Create unknown standard objects at run-time

DESCRIPTION

This modules provides several functions to manipulate objects based on
their type name.

$object = create_standard_object($object_type, ...)
This will create an object of type $object type. The following pa-
rameters will be passed to the object at creation time.

create_db_object ()
Return a GT::DB object created based on GT::Conf data. Thus
GT::Conf::load() should be called before this function. If DB::module
doesn’t exist in the config, it tries to load the user configuration
(supposing it has never been done before).

get_standard_name ($object, $shorten, $number)
Return the standard name of an object that can be later used to
create it again.

get_long_name ($code)
Returns the long name of the market (if defined).

See also ~/.gt/sharenames which contains lines of the form <code>\t<long

name> mapping a market code to its long name.

178

155 GT::Graphics::Axis

An axis can be displayed on a side of a Zone. It’s associated to a scale. It
precises how much space there’s between ticks.

GT::Graphics:: Axis->new($scale)

Create a new axis and use the associated scale.

$a->set {left,right,top,bottom} side()

Indicate that the axis is on the corresponding side of the graphic.

$a->set zone($zone)

Indicate the zone attached to the axis.

$a->set rectangle($x1, $y1, $x2, $y2)
Indicate the rectangle in which the axis should be displayed. The rectangle

is defined by the lower left corner (x1,yl) and the upper right corner
(x2,y2).

$a->set space for(big) ticks

Define the space between (big) ticks.

$a->set grid level({0/1]2})

Indicate if a grid should be displayed : - 0 => no grid - 1 => grid on big
ticks - 2 => grid on all ticks

$a->set grid color($color)

Use the indicated color for the grid.

$a->label display({0|1})

Tell if labels should be displayed or not.

179

$a->set custom ticks([[$x,$label], ...], $below zone)
Use the given custom ticks. If $below zone is set to one, the labels will

be displayed below the zone starting at the given coordinate, otherwise it
will be displayed right below the given coordinate (ie below the tick).

$a->set custom big ticks([[$x,$label], ...], $below zone)
Use the given custom big ticks. If $below zone is set to one, the labels will

be displayed below the zone starting at the given coordinate, otherwise it
will be displayed right below the given coordinate (ie below the tick).

$a->display($driver, $picture)

Display the axis on the picture.

180

156 GT::Graphics::DataSource

A datasource if a source of data for a graphical object. The datas are
always indexed by an integer.

157 FUNCTION TO IMPLEMENT

Each real datasource has to implement a few functions :

Constructor : $ds->new(...)

A constructor for the datasource has the right to have parameters. When
constructed it should update the available range and set the selected range
to the available range.

$ds->get($index)

Return the data associated to the corresponding index.

$ds->is_ available($index)

Tell if the data is available for the corresponding index.

$ds->update value range()

Update the minimum value and the maximum value.

158 GENERIC FUNCTIONS AVAILABLE

($start, $end) = $ds->get selected range()

Return the range of selected data.

$ds->set selected range($start, $end)

Set the range of selected data.

($start, $end) = $ds->get available range()

Return the range of available data.

181

$ds->set available range($start, $end)

Set the range of available data.

($min, $max) = $ds->get value range()

Return the minimum and the maximum of the values available within the
selected range.

$ds->set _min_value($min)

Set the minimum value.

$ds->set _max_value($max)

Set the maximum value.

182

159 GT::Graphics::DataSource::Close

This datasource provides close price information. It uses a GT::Prices
object as a basis.

GT::Prices::DataSource::Close->new($prices)

Create a new close prices data source.

183

160 GT::Graphics::DataSource::GenericIndicatorResults

This datasource is a generic module to handle any information provided
by an indicator.

Details

This module will return either a serie of single data or a serie of array.

If the input arguments contains a string like "Indicators::BOL /99", we will
assume that the user wants to have all data available form the Bollinger
indicator and we will return an array with all the data.

If the input arguments contains a string like "Indicators:BOL" (It’s the
same than "Indicators:BOL/0"), "Indicators::BOL/1" (or / any number),
we will assume that the user only wants a serie of single data, which is
in our example the third serie (keep in mind that the first serie start at
Z€ero).

We will either use only a single data serie or a all data available for the
calculation of the value range.

GT::Graphics::DataSource::GenericIndicatorResults- >new($calc,
$indicator desc)

Create a new indicator data source.

184

161 GT::Graphics::DataSource::PortfolioEvaluation

This datasource provides the evaluation of a portfolio.

GT::Graphics::DataSource::PortfolioEvaluation->new($calc,
$portfolio)

To create a new portfolio evalution datasource object, you need to give a
calculator and a portfolio as parameters.

185

162 GT::Graphics::DataSource::Prices

This datasource provides prices information. It uses a GT::Prices object
as a basis.

GT::Prices::DataSource::Prices->new($prices)

Create a new prices data source.

186

163 GT::Graphics::DataSource::PricesColor

This datasource provides a color depending on the prices movement. Green
when up, red when down, black when equal.

It uses a GT::Prices object as a basis.

GT::Prices::DataSource::PricesColor->new($prices)

Create a new prices color data source.

$pc->set {up,down,unchanged} color($color)

Change the color returned for the up/down/unchanged days.

187

164 GT::Graphics::DataSource::SingleIndicator

This datasource is a generic module to handle any information provided
by an indicator.

We will return a serie of data based on a single generic indicator name,
like "Indicators::BOL/2".

188

165 GT::Graphics::DataSource::Systems

This datasource is a generic module to handle any information provided
by a system.

189

166 GT::Graphics::DataSource::Volume

This datasource provides volume information. It uses a GT::Prices object
as a basis.

GT::Prices::DataSource::Volume->new($prices)

Create a new volume data source.

190

167 GT::Graphics::Driver

A graphic driver is a well defined interface that let you actually generate a
picture by using drawing primitives. Those primitives are used by "draw-
able" objects that implements the display($driver, $picture) method.

168 Drawing API

$picture = $driver->create picture($rootzone)

This does create the empty picture on which you’ll draw various things.
The picture has the size corresponding to the given "zone".

$driver->line($picture, $x1, $y1, $x2, $y2, $color)
$driver->dashed line($picture, $x1, $y1, $x2, $y2, $color)

$driver->antialiased line($picture, $x1, $y1, $x2, $y2,
$color)

$driver->rectangle($picture, $x1, $y1, $x2, $y2, $color)

$driver->filled rectangle($picture, $x1, $y1, $x2, $y2,
$color)

$driver->polygon($picture, $color, @points)
$driver->filled polygon($picture, $color, @points)
$driver->circle($picture, $x, 8y, $width, $height, $color)
The last 7 methods are simple drawing methods. The coordinates are

absolute (ie as expressed in the $rootzone). Take care to convert them if
needed.

For the rectangles, you give the lower left corner and the upper right
corner.

The (0,0) coordinate is the lower left corner.

191

my $oldwidth = $driver->line width($picture, $width)
This method changes the default width of displayed lines. It returns the

previous width so that you can restore it to its previous value once you’re
finished with the operation needing a special line width.

If $width isn’t given, it only returns the actual width.

$driver->string($p, $name, $size, $color, $x, $y, $text,
$halign, $valign, Sorientation)

This method is used to draw texts on the picture.
Horizontal /vertical align : $ALIGN _LEFT, $ALIGN _CENTER, $ALIGN_RIGHT

Orientation : SORIENTATION_UP, $ORIENTATION_DOWN, $ORI-
ENTATION _RIGHT, $ORIENTATION _LEFT

The text is displayed near (x,y) by follwing the required alignments.

169 Output API

$driver->save to($p, $filename)

Save the picture in the given filename.

$driver->dump($p)

Dump the picture to the standard output.

170 Generic functions

Those functions don’t need to be reimplemented, they are implemented
with the other primitives.

$driver->cross($picture, $x1, $y1, $x2, $y2, $color)

Draw a cross.

192

171 DATA STRUCTURE

Colors

Colors are simple RGB triplet associated to an alpha channel : [R, G, B,
A] They are only array references.

Some variables are available for the most common colors :

$COLOR_WHITE
$COLOR_BLACK
$COLOR_RED
$COLOR_GREEN
$COLOR_BLUE

Fonts

Font names are simple strings (true type font names). Font size are num-
bers.

Some variables are available for the most common values :

$FONT _SIZE TINY
$FONT _SIZE SMALL
$FONT _SIZE MEDIUM
$FONT _SIZE LARGE
$FONT _SIZE GIANT

$FONT _ARIAL
$FONT_TIMES

$FONT _HELVETICA
$FONT_SERIF
$FONT_SANS_SERIF
$FONT_FIXED

$FONT _PROPORTIONNAL

193

172 GT::Graphics::Driver::GD

The GD driver implements the drawing primitives using the GD module
that lets you create PNG images.

194

173 GT::Graphics::Driver::ImageMagick

This driver implements the drawing primitives using the ImageMagick
Perl extension.

195

174 GT::Graphics::Driver::Postscript

This driver implements the drawing primitives using the PostScripts::Simple-
module.

196

175 GT::Graphics::Driver::SVG

Overview

This driver implements the drawing primitives using the SVG module
available in CPAN to create Scalable Vector Graphics (SVG) files, which
is an exciting new XML-based language for Web graphics from the World
Wide Web Consortium (W3C).

Links

http://www.adobe.com/svg/main.html http: / /www.w3.org/ TR /SVG/ http:/ /www.roasp.com/

197

176 GT::Graphics::Graphic

A graphic is composed of a layout of zones. Objects are affected to the
various zones. Those objects may be displayed. The display engine may
use an associated default scale to obtain coordinates of points to draw.

GT::Graphics::Graphic->new($zone)

Create a new graphic using the specified zone layout.

$graphic->set zone($zone)
Define the layout of the display zones. You shouldn’t call this once you

added graphical objects because objects may reference zones that are no
more part of the new layout.

$graphic->set background color($color)

Set the background color of the graphic.

$graphic->add_object($object)

Add a graphical object to the graphic.
$graphic->display($driver, $picture)

Display the graphic in the picture. It will display the zones and the graph-
ical objects.

198

177 GT::Graphics::Object

A graphical object is a part of a graphic. It can display itself on a picture.

178 FUNCTIONS TO IMPLEMENT

Each graphic object will have to implement these two functions (methods).

$0->init(...)

This function is called with the trailing arguments (e,g, $args[2] and up)
given to the generic new constructor defined here.

$0->display($driver, $picture)

Display the graphic object on the picture using the given driver. It may
use $0->{’source’} and $0->{’zone’} (e.g. the graphic objects argument
hash $self->{’source’} and $self->{’zone’} to get the data to display and
display itself in the correct zone.

179 GENERIC FUNCTIONS

my $obj = GT::Graphics::Object::<Something>->new($datasource,
$zone, ...)

The generic new constructor declared and defined here takes the first 2
arguments (e.g. $datasource and $zone) and assigns them to the objects
argument hash $self->{’source’} and $self->{’zone’}, respectively, and
passes the remaining arguments, if any, to the init method which must
be provided by the GT::Graphics::Object::<Something> package.

in addition, the new constructor sets the objects argument hash keys
'bg_color’ and ’fg_ color’ (e.g. $self->{"bg_color’} and $self->{’fg_color’})
to the gt config key-values corresponding with Graphic::BackgroundColor
and Graphic::ForegroundColor respectively.

my $o z level = $o->get z level()
$o->set _z level($z)

Those two functions are used to manage the order in which the orders are
displayed. An object with a low Z level is drawn first.

199

my $o_datasource = $o->get source()

$0->set_source($source)

set/get the datasource associated to this object.

$0->set zone($zone)

Set the zone in which the object will be displayed.

$0->set special scale($scale)

Use a special scale to draw this object.

my $o_scale = $o->get scale()

Return the associated scale. If it exists, it uses the special scale, otherwise
returns the default scale associated to the zone.

$0->set background color($color)

Use this color as background color.

$0->set foreground color($color)

Use this color as foreground color.

my $o_scale = $o->get background color()

return the objects background color.

my $o_fgc = $o->get foreground color()

return the objects foreground color.

200

180 GT::Graphics::Object::BarChart

This graphical object display a serie of bars.

201

181 GT::Graphics::Object::BuySell Arrows

This graphical object display buy and sell arrows.

Description and Usage

the object doesn’t accept arguments when created, however it reads gt
configure file for and sets these values (default values are indicated):

Graphic: :BuySellArrows: :BuyColor "green"
Graphic: :BuySellArrows::SellColor "red"
Graphic: :BuySellArrows::Distance 8
Graphic::Candle: :Height 3
Graphic: :BuySellArrows::SizeFactor 1

note: the default SizeFactor of 1 should make this modified version work
identically to the prior version

personally, i find a Distance of about 24 and a SizeFactor of 3 to 6 makes
the arrow plot better. in addition i prefer to darken the colors and make
the partly transparent

Graphic: :BuySellArrows: :BuyColor "[0,135,0,64]" # very dark green
Graphic: :BuySellArrows::SellColor "[150,0,0,64]" # dark red

used in graphic.pl graphic configuration file as shown
below:

plotting on the primary price plot

--add=BuySellArrows (Systems: :Generic \

{ S::Generic::CrossOverUp {I::MACD/1 26 52 20} {I::MACD/2 26 52 20} } \
{ S::Generic::CrossOverDown {I::MACD/1 26 52 20} {I::MACD/2 26 52 20} } \
)

plotting arrows on a secondary zone

—add=New-Zone(5)

—add=New-Zone(100) —add=Curve(I:MACD/1 26 52 20, [120, 40, 0]) -
add=Curve(I:MACD/2 26 52 20, red) —add=Text("macd: 26 52 20", 2,
95, left, center, small, [120, 40, 0], arial) —add=Set-Scale(auto)

—add=BuySellArrows(Systems::Generic \ { S::Generic::CrossOverUp {I::MACD/1
26 52 20} {I::MACD/2 26 52 20} } \ { S::Generic::CrossOverDown {I::MACD/1
26 52 20} {I:-MACD/2 26 52 20} } \) ~add=Set-Special-Scale(auto,"log")

202

182 GT::Graphics::Object::Candle

This graphical object display a series of candlesticks.

203

183 GT::Graphics::Object::CandleVolume

This graphical object display a series of candlesticks. The width of each
candle is determined by the volume.

204

184 GT::Graphics::Object::CandleVolumePlace

This graphical object display a series of candlesticks. The width of each
candle is determined by the volume.

205

185 GT::Graphics::Object::Curve

This graphical object display a curve.

206

186 GT::Graphics::Object::Histogram

This graphic object displays a histogram.

used in graphic.pl it takes two arguments, an indicator and a color. it
plots vertical bars (histogram) from zone zero to data value.

the histogram default color is "yellow", but can be changed via configu-
ration option "Graphic::Histogram::Color" and by the color parameter on
the graphic option statement. in addition the color can be controlled by
an indicator as well (see examples).

bars will be clipped at upper and lower zone boundries. clipped bars
will display a small arrow at the clipped end. there are two hardcoded
variations that set the color of this marker. the old way requires you to
edit the file and set the hash variable $self->{’inverse’} in the sub init
method to any value.

$self->{’inverse’} = ’enable’;

in this mode the clip marker color will be the inverse of the current color.
benefits include good contrast with respect to the histogram especially
when an indicator is controlling the color.

currently the clip marker color will be either the default value "blue" or the
value set by your configuration option parameter "Graphic::Histogram::ClipColor"

187 examples

typical in a graphic config file
--add=Histogram(I:MACD/3 26 52 20, brown)
--add=Histogram(I:MACD)
--add=Histogram(I:V0SC 21, [127,127,127])
--add=Histogram(I:ADL, '"dark blue")

using indicator to set historgram color: (in options file only)
Graphic::Histogram::Color Indicators::Generic::If \
{Signals:Generic:Below {I:Prices OPEN} {I:Prices CLOSE}} green red

$hist->set color datasource($ds)

Use the indicated datasource to retrieve the color of the bar.

207

188 GT::Graphics::Object::Marks

This graphical object display a serie of '+’ marks.

It needs a data source with a single value per coordinate pair (in other

words typical datasource for prices will not work) my $graph ds = GT::Graphics::DataSource::Prices-
>new($q); # wrong my $marks ds = GT::Graphics::DataSource::Close-

>new(8q); # ok

208

189 GT::Graphics::Object::Mountain

209

190 GT::Graphics::Object::MountainBand

210

191 GT::Graphics::Object::Text

This graphical object displays a block of text.

211

192 GT::Graphics::Object::Positions

This graphical object displays all positions in a portfolio on a graph if the
order date coincides with the graph time span.

the default buy orders color is Graphic::Positions::BuyColor which defaults
to 62 % green intensity if not set in .gt/options

the default sell orders color is Graphic::Positions::SellColor which defaults
to 62 % red intensity if not set in .gt/options

the marker color is always adjusted to be a transparent version of the color
specified (and will likely alter the transparency attribute if it is already
set)

if a 6th argument is supplied via Positions->new method and it is "true"
(in perl not zero or something other than "") then a horizontal line will
be drawn from the opening of the position (or start date) to the end date.
price lines are not drawn for closed positions since the price points will
likely differ. the line color will be based on the type of position, green for
long, red for short.

193 SYNOPSIS

my $pf = GT::Portfolio->create from file("./my _portfolio);

$all trades = GT::Graphics::Object::Positions->new($calc, $zone, \ $pf,
$first, $last, "enable priceline");

NB: $calc, $zone, required by GT::Graphics::Object::<object>->new()
which Positions.pm inherits. see Object.pm.

$graphic->add_object($all trades);
where $calc will yield the security symbol ($code) being processed

$portfolio contains the portfolio data
$first, $last are the dates of interest

194 EXAMPLES: script code

(from ras hack of Samal Chandrans’ portgraph.pl)

my $pf = GT::Portfolio->create_from_file($pfname);

my $all_trades = GT::Graphics::0bject::Positions->new(
$calc, $zone, $pf, $first, $last, "plotline");
$graphic->add_object($all_trades);

(from ras hack of backtest.pl)

212

my $positions = GT::Graphics::0bject::Positions->new(

$calc, $zone, $analysis->{’portfolio’}, $first, $last, "show priceline");
$positions->set_special_scale($scale_p);
$graphic->add_object ($positions) ;

195 BUGS, NOTES, LIMITATIONS

no testing with widths other than the default width

i selected width of 24 because it was large enough for my old tired eyes to
see on an otherwise cluttered graph but not so large as to obliterate the
adjacent candle sticks

no testing with non-closed short positions. manage portfolio doesn’t seem
to support them (or am i missing something) so i’ve been unable to easily
mechanize an test/evaluation portfolio with them.

213

196 GT::Graphics::Object::Text

This graphical object displays a block of text.

$0->set horizontal align($value)
$0->set_ vertical align($value)
$0->set x position($value in pc)
$0->set y position($value in pc)
$o->set font size($fontsize)

$0->set font face($font face)

214

197 GT::Graphics::Object::Trades

This graphical object displays trades as markers on a plot.

has opaque colors for lines and arrows

215

198 GT::Graphics::Object::VotingLine

This graphical object display buy and sell arrows.

The Voting Line contains the results of a System Manager, which is an
entity interacting between a Portfolio Manager, a Trading System, an
Order Factory, Trade Filters and Close Strategies.

216

199 GT::Graphics::Scale

A scale converts local data (numbers) into coordinate ready to be dis-
played.

Can use linear scale or logarithmic ones.
linear : X = a * x + b logarithmic : X = In(x-b + 1) *a
$s->set_ vertical linear mapping($yl, $y2, $tyl, $ty2)

Parameterize the scale to elaborate a mapping of [$y1,8y2] => [$ty1,5ty2]
on the vertical axis.

$s->set horizontal linear mapping($x1, $x2, $tx1, $tx2)
Parameterize the scale to elaborate a mapping of [$x1,$x2] => [$tx1,5tx2]

on the horizontal axis.

$s->set vertical logarithmic mapping($y1, $y2, $tyl,
$ty2)

Parameterize the scale to elaborate a logarithmic mapping of [$y1,8y2]

=> [$ty1,$ty2] on the vertical axis.

$s->set horizontal logarithmic mapping($x1, $x2, $tx1,
$tx2)

Parameterize the scale to elaborate a logarithmic mapping of [$x1,$x2]

=> [$tx1,$tx2] on the horizontal axis.

($nx, $ny) = $s->convert to coordinate($x, $y)

Returns the coordinate of the ($x, $y) point with the scale modification
applied.

$nx = $s->convert to x coordinate($x)

Returns the X coordinate of the $X value with the scale modification
applied.

217

$ny = $s->convert to y coordinate($y)

Returns the Y coordinate of the $y value with the scale modification ap-
plied.

($x, 8y) = $s->get value from coordinate($nx, $ny)

Returns the value corresponding to the given coordinate.

$s->copy horizontal scale($other)

$s->copy vertical scale($other)

Copy the horizontal /vertical scale defined in the $other scale object.

218

200 GT::Graphics::Tools

This modules provides several helper functions that can be used in all
modules.

It provides functions for managing labels on axes that can be imported
with use GT::Graphics::Tools qw(:axis) :

build axis for timeframe($prices, $timeframe, $put label, $pe-
riod)
Create the ticks for a time axis for the given $prices using the in-
dicated $timeframe. If $put label then labels we’ll be put for each
tick. If $period the label will be the name of the period, otherwise it
will be the date of the first subperiod (usually a day).

build axis for interval($min, $max, $many, $label)
Create the ticks between $min and $max for a numeric axis. If $many
then many ticks (“20) will be created otherwise only a few (~5) will
be created. If $label then the ticks will be labelled.

($min, $max) = union range($minl, $max1, $min2, $max2)

Return the range resulting of the union of the two given ranges.

It provides functions to manage colors. They can be imported with use
GT::Graphics:: Tools qw(:color) :

get _color({$colorname|$color code})

Return a color. You can ask it by its name ("blue", "light blue", ..)
or by its RGB code "[125,164,198]".

219

201 GT::Graphics::Zone

A zone is a part of the graphic. It has an external size and an internal
size. The internal size may be split in several sub zones.

A zone can also be considered like a 1 drawable z object and as such it
implements the display(...) method. It will call the display methods for
the axis, draw the border if needed and draw the title.

GT::Graphics::Zone->new($width, $height, $left, $right,
$top, $bottom);

Creates a new zone with the given internal size. $left, $right, $top, $bot-
tom is the free space to keep around the internal zone.

$z->add subzone($zx, $zy, $zone)

Add $zone as a subzone of the current zone and place it at position
($zx,$zy). $zx and $zy are positive integers.

($ax, $ay) = $z->absolute coordinate($x, $y)

Returns the absolute coordinate of the given point. ($x, $y) is the coor-

dinate in the zone $z. ($ax, $ay) are the coordinate of the same point but
in the root zone.

($x, 8y) = $z->zone coordinate($zx, $zy)
Returns the bottom left coordinate of the zone identified by ($zx, $zy).

This function will only give good results once all zones have been created
and linked together.

$z->update _size()

Update the size of the zone according to the size of the childs.

220

$z->get subzone($zx, $zy)

Return the subzone indicated by the coordinate.

$z->set axis {left,right,top,bottom}($axis)

Put an axis on the indicated side.

$z->get axis {left,right,top,bottom}()

Get the axis of the indicated side.

$z->set_title {left,right,top,bottom}($title)

Put a title on the indicated side.

$z->get title {left,right,top,bottom}()

Get the title of the indicated side.

$z->set title font name($name)
$z->set title font size($size)
$z->set title font color($size)

Those 3 methods are used to change the font for the title.

$z->set default scale($scale)

Use $scale as the default scale for this zone.

$z->set border width($width)

Add a border of the given width around the zone. It will not sharp the
zone but extend/decrease the space around it.

$z->set border color([$R,$G,$B])

Change the color of the border.

221

$z->includes point($x, 3y, [$extented])

Returns true if the point is within the zone, false otherwise. If $extended
is true, the border of the zone is considered as part of the zone.

$z->display($driver, $graphic)

Display the zone with its axis, its borders and its titles.

202 SIMPLE FUNCTIONS

$z->width() && $z->height()

$z->external width() && $z->external height()
($x, $y) = $z->get position()

$z->get parent()

203 INTERNAL FUNCTIONS

$z->set parent($parent)

$z->set position($zx, $zy)

222

204 GT::Indicators

Provides some functions that will be used by all indicators.

DESCRIPTION

GENERIC EXPORTED FUNCTIONS

build_object_name($encoded, [Qargs], $key)
Generate the name of an indicator based on its "encoded" name.

FUNCTIONS TO RETRIEVE USUAL PRICES

$GET _OPEN, $GET _FIRST,$GET_ HIGH, $GET LOW, $GET LAST,
$GET CLOSE and $GET VOLUME are functions references that can
be passed as arguments to some indicators where input functions are ex-
pected. They are automatically exported when doing "use GT::Indicators;".

For example, the indicator AMA (Arithmetic Moving Average) can be
used to calculate the average of anything (other indicators or prices). You
can provide those functions if you want to calculate an average of some
prices (or quotations or volumes).

MANAGE A REPOSITORY OF INDICATORS

GT::Indicators: :get_registered_object ($name) ;

GT::Indicators: :register_object($name, $object);
GT::Indicators::get_or_register_object($name, $object);
GT::Indicators: :manage_object (\GNAMES, $object, $class, $args, $key);

DEFAULT FUNCTIONS FOR INDICATORS

GT::Indicators::<indicator>->new($args, $key, $func) depreciated

$func has been depreciated and is no longer supported. if $func is

passed as an argument it will result in a runtime error.
GT::Indicators::<indicator>->new($args, $key)

Create a new <indicator> with the given arguments. $key is op-

tional, useful for indicators which can use non-usual input streams.
$indic->calculate_all($calc)

calculate all will calculate all the values of the indicators for all
possibles days.

223

$indic->calculate_interval($calc, $first, $last)

Provide a default non-optimized version of calculate interval that
calls calculate once for each day.

Real indicators are encouraged to override this function to provide
an optimized version of the calculation algorithm by possibly reusing
the result of previous days.

$indic->initialize()
Default method that does nothing. note this method is called by
GT::Registry::manage object if the object is new and needs initial-
ization.

$indic->get_name

$indic->get_name($n)
Get the name of the indicator. If the indicator returns several values,
you can get the name corresponding to any value, you just have to
precise in the parameters the index of the value that you’re interested
in.

$indic->get_nb_values
Return the number of different values produced by this indicator that
are available for use.

224

205 GT::Indicators::ADL

Accumulation/Distribution line

DESCRIPTION

Overview

The Accumulation/Distribution Line was developed by Marc Chaikin to
assess the cumulative flow of money into and out of a security.

Calculation

The ADL is the cumulative sum of (((Close - Low) - (High - Close)) /
(High - Low)) * Volume

Links

http://www.stockcharts.com/education/What /Indicator Analysis/indic_ AccumDistLine.html
http://www.equis.com/free/taaz/accumdistr.html

225

206 GT::Indicators::ADX

ADX

DESCRIPTION

volatility index

Overview
Calculation

Examples

GT::Indicators::ADX->new() GT::Indicators::ADX->new([20])

Validation

This indicators is validated by the values from comdirect.de. The stock
used was the DAX (data from yahoo) at the 04.06.2003:

ADX[14] [2003-06-04] =

+DMI[14] [2003-06-04] =

-DMI[14] [2003-06-04]

DMI[14] [2003-06-04] =
Links

226

19.9961 (comdirect=20.00)
28.9251 (comdirect=28.93)

= 21.1723 (comdirect=21.17)

15.4754 (comdirect=15.48)

207 GT::Indicators::ADXR

Overview

Calculation

ADXR = (Today’s ADX + ADX #1 days ago) / 2

Examples

GT:Indicators::ADXR->new() GT::Indicators:: ADXR->new([20])

Links

GT::Indicators:: ADXR::calculate($calc, $day)

227

GT::Indicators:: AROON

Overview

Developed by Tushar Chande in 1995, the Aroon is an indicator system
that can be used to determine whether a stock is trending or not and how
strong the trend is. "Aroon" means "Dawn’s Early Light" in Sanskrit and
Chande choose that name for this indicator since it is designed to reveal
the beginning of a new trend.

The Aroon indicator consists of two lines, Aroon(up) and Aroon(down).

The Aroon Oscillator is a single line that is defined as the difference be-

tween Aroon(up) and Aroon(down). All three take a single parameter

which is the number of time periods to use in the calculation. Since

Aroon(up) and Aroon(down) both oscillate between 0 and +100, the

Aroon Oscillator ranges from -100 to +100 with zero serving as the crossover
line.

Calculation

Aroon(up) for a given time period is calculated by determining how much
time (on a percentage basis) elapsed between the start of the time pe-
riod and the point at which the highest closing price during that time
period occurred. When the stock is setting new highs for the time period,
Aroon(up) will be 100. If the stock has moved lower every day during the
time period, Aroon(up) will be zero. Aroon(down) is calculated in just
the opposite manner, looking for new lows instead of new highs.

Examples

GT::Indicators::AROON->new() GT::Indicators:: AROON->new([20])

Validation

This indicators is validated by the values from comdirect.de. The stock
used was the DAX (data from yahoo) at the 04.06.2003:

AroonUp[25] [2003-06-04] = 100.0000 (comdirect: 100.0) AroonDown[25]
[2003-06-04] = 76.0000 (comdirect: 76.0) AroonOsc[25] [2003-06-04] =
24.0000 (comdirect: 24.0)

Links

http://stockcharts.com /education /resources/glossary /aroon.html http: //www.paritech.com /educatic
http://www.geocities.com /WallStreet /Floor /1035 /aroon.htm

228

GT::Indicators:: AROON::calculate($calc, $day)

229

208 GT::Indicators::AT3

Overview

AT3 is an excellent data-fitting technique by Tim Tillson (cf. "Smoothing
Techniques For More Accurate Signals" in Technical Analysis of Stocks
and Commodities - January 1998) that works with RSquare.

Calculation

N is the Exponential Moving Average Period a is the amplification per-
centage of the filter’s response to price movement (0 < a < 1)

a = RSquare()

el = N-days EMA of Close Prices €2 = N-days EMA of el e3 = N-days
EMA of e2 e4 = N-days EMA of e3 e5 = N-days EMA of e4 ¢6 = N-days
EMA of e5

cl=(a)"3c2=3%a"2c3=-6%*a"2-3*a-3%a3c4=1+3%a
+a"3+3*a"2
T3 =cl*e6 +c2*eb+c3*ed +cd*el

GT::Indicators::T3::calculate($calc, $day, $args, $key,
$data)

230

209 GT::Indicators::ATR

Overview
The Average True Index (ATR) is a measure of volatility. High ATR values
often occur at market bottom following a ’panic’ sell-off. Low ATR values

are often found during extended sideways periods, such as those found at
tops and after consolidation periods.

Calculation

The Average True Index is a moving average of the True Ranges.

Parameters

The standard ATR works with a fourteen-day parameter : n = 14

Example

GT:Indicators::ATR->new() GT::Indicators: ATR->new([12])

Note

The Average True Range can be interpreted using the same techniques
that are used with other volatility indicators.

Validation

This indicators is validated by the values from comdirect.de. The stock
used was the DAX (data from yahoo) at the 04.06.2003:

ATR[14] [2003-06-04] — 79.2343 (comdirect—79.23)

Links

http://www.equis.com/free/taaz/avertrurang.html http://stockcharts.com /education/What /Indicat
http://www.finance-net.com/apprendre/techniques/atr.phtml

GT::Indicators:: ATR::calculate($calc, $day)

231

210 GT::Indicators::BBO

%B - the Bollinger Band Oscillator

DESCRIPTION

Bollinger Calculated this oscillator. The %B falls below 0 if the Price
crosses the lower Band. It is set to > 1 if the price raises above the upper
band.

Parameters

The parameters are identical with those of the BOL-Indicator.

232

GT::Indicators::BOL

Bollinger Bands are similar to moving average envelopes. The difference
between Bollinger Bands and envelopes is envelopes are plotted at a fixed
percentage above and below a moving average, whereas Bollinger Bands
are plotted at standard deviation levels above and below a moving average.

The standard Bolling Bands (BOL 20-2) can be called like that : GT::Indicators::BOL-
>new()

If you need a non standard BOL : GT::Indicators:BOL->new([25, 2.5])

GT::Indicators::BOL::calculate($calc, $day)

233

GT::Indicators::BPCorrelation (Bravais-Pearson Cor-
relation Coeflicient)

This function will calculate the Bravais-Pearson Correlation Coefficient.
Correlation analysis measures the relationship between two items and
shows if changes in one item will result in changes in the other item.

this indicator requires three arguments, and provides no default values for
any of them.

the first argument is the number of intervals in the period, it can be a
constant or a data series. the period is used as the number of data values
used in each computation

the second and third arguments must be functions (e.g. data series or
data objects?)

the indicator will validate that the arguments are provided and are of the
correct type.

examples (display indicator)

% display_indicator.pl I:BPCorrelation 13000 \
’20 {I:Prices OPEN} {I:Prices CLOSE}’

% display_indicator.pl I:BPCorrelation 13000 \
’14 {I:G:Cum 1} {I:Prices CLOSE}’

GT::Indicators::Correlation::calculate($calc, $day)

234

211 GT::Indicators::CCI

Overview

Developed by Donald Lambert, the Commodity Channel Index (CCI) was
designed to identify cyclical turns in commodities. The assumption behind
the indicator is that commodities (or stocks or bonds) move in cycles, with
highs and lows coming at periodic intervals.

Calculation

There are 4 steps involved in the calculation of the CCI : 1. Calculate the
last period’s Typical Price (TP) = (H4+L+C)/3 where H = high, L = low,
and C = close. 2. Calculate the 20-period Simple Moving Average of the
Typical Price (SMATP). 3. Calculate the Mean Deviation. First, calculate
the absolute value of the difference between the last period’s SMATP and
the typical price for each of the past 20 periods. Add all of these absolute
values together and divide by 20 to find the Mean Deviation. 4. The final
step is to apply the Typical Price (TP), the Simple Moving Average of
the Typical Price (SMATP), the Mean Deviation and a Constant (.015)
to the following formula :

CCI = ((Typical Price - Simple Moving Average of the Typical Price) /
(0.015 * Mean Deviation))
Parameters

Lambert recommended using 1/3 of a complete cycle (low to low or high
to high) as a time frame for the CCIL. Note that the determination of the
cycle’s length is independent of the CCI. If the cycle runs 60 days (a low
about every 60 days), then a 20-day CCI would be recommended.

Example

GT::Indicators::CCI->new() GT::Indicators::CCI->new([25])

Note

Traders and investors use the CCI to help identify price reversals, price
extremes and trend strength. As with most indicators, the CCI should be
used in conjunction with other aspects of technical analysis. CCI fits into
the momentum category of oscillators.

235

Validation

This Indicator was validated by the data available from comdirect.de: The
DAX at 04.06.2003 (data from yahoo.com) had a CCI of 158.71 This is
consistent with this indicator: 158.7057

Links

http://www.equis.com /free/taaz/cci.html http: / /www.stockcharts.com /education/What /IndicatorA
http://www.finance-net.com/apprendre/techniques/cci.phtml

GT::Indicators::CCI::calculate($calc, $day)

236

GT::Indicators:: CHAIKIN

Overview

The Chaikin Oscillator is a moving average oscillator based on the Accu-
mulation/Distribution indicator (ADL.pm).

Calculation
The formula is the difference between the 3-day exponential moving aver-

age and the 10-day exponential moving average of the Accumulation /Distribution
Line.

Examples

GT::Indicators:: CHAIKIN->new() GT::Indicators:: CHAIKIN->new([3, 10])

Links

http://www.stockcharts.com/education/What /IndicatorAnalysis /indic_ ChaikinOscillator.html
http://www.equis.com/free/taaz/chaikinosc.html

GT::Indicators:: CHAIKIN::calculate($calc, $day)

237

212 GT::Indicators::CMO

Chande Moment Oscillator

DESCRIPTION
The CMO indicator was developed by Trushar Chande and presented 1994
in the book "The New Technical Trader". It can be used as an oscillator

(CMO > 50 => overbought, CMO < -50 => oversold) or as a trend
indicator (the higher/lower the CMO, the stronger the trend)

CMO = 100 * (SumUp-SumDown) / (SumUp+SumDown)

Parameters

Period (default 10)
This argument is used to calculate the SumUp and SumDown.

Creation

GT::Indicators: :CMO->new()

Links

238

213 GT::Indicators::CNDL

Overview

The CandelCode (CNDL) indicator is based on the article "Coding Can-
delsticks" published in Technical Analysis of Stocks and Commodities
(November 1999) by Viktor Likhovidov.

Calculation

Parameters
Two parameters are used to initialize the Bollinger Bands necessary to

calculate all required thresholds; the standard deviation number is set to
0.5 with a period of 55.

Examples

GT:Indicators::CNDL->new() GT::Indicators::CNDL->new([55, 0.5])

Appendix

If you need to find quickly the candel code of a specific pattern, here is a
conversion table : /GT/Docs/CandelsticksCodes

Links

http://www.traders.com/Documentation/FEEDbk _docs/Archive/012000/TradersTips/TradersTips

239

214 GT::Indicators::ChaikinsVola

Chaikins Volatility

DESCRIPTION

This is calculated as the Rate of change of an Moving Average of the
difference between High and Low.

Parameters

Period 1
The Period used for the ROC.

Period 2
The Period used for the MA.

High

Low

240

GT::Indicators::Chandelier

The Chandelier Exit is described in Dr. Alexander Elder’s Book "Come
into my Trading Room" and provides stops for closing long or short posi-
tions. It was originally conceived by Chuck LeBeau.

It accepts the number of bars to use for the calculation and a coefficient
as parameters with 22 and 3 being the defaults that are also used in the
examples in the book.

ChanUp should be used for long positions, ChanDn for short positions.

GT::Indicators::Chandelier::calculate($calc, $day)

241

215 GT::Indicators::ForwardKPercent

Probability to make a profitable trade

DESCRIPTION

This indicator calculates the K%-value:

CLOSE - MIN(3, Low)
KY (3) = --mmmmmmmmmmmmmmmmmmoo-
MAX (3, HIGH) - MIN(3,Low)

Be aware that this indicator "knows" the future so don™ use it for your
trading strategies :)

PARAMETERS

Number of days
The number of days the indicator looks in the future

242

216 GT::Indicators::MeanPossiblePerformance

DESCRIPTION
PARAMETERS

Number of days
The number of days the indicator looks in the future
Data

This is the data to use as input. If you don’t specify anything, the
close price will be used by default.

243

217 GT::Indicators::DMI -

DESCRIPTION
EXAMPLES

244

218 GT::Indicators::DSS

Double Smoothed Stochastic (William Blau).

DESCRIPTION

From http://www.wealth-lab.com /cgi-bin/WealthLab.DLL/getdoc?id=128:

DSS applies 2 smoothing EMAs of different lengths to a Stochastic Oscilla-
tor. DSS ranges from 0 to 100, like the standard Stochastic Oscillator. The
same rules of interpretation that you use for Stochastics can be applied to
DSS, although DSS offers a much smoother curve than Stochastics.

From http://www.tradesignalonline.com/Lexicon/Default.aspx?name=DSS%3a+Double+Smoothed-

Calculation of the DSS indicator is similar to stochastics. The numerator:
first the difference between the current close and the period low is formed,
and this is then exponentially smoothed twice. The denominator is formed
in the same way, but here the difference is calculated from the period high
minus the period low. Numerator and denominator yield the quotient,
and this value is multiplied by 100.

Calculation

As can be seen from above, there is some disagreement on the calculation
process. We follow the latter and calculate DSS-BLAU as follows:

DSS-BLAU[p1,p2,p3] = EMA[p3, EMA[p2, Close - LowestLow[p1]] 100 *
- EMA[p3, EMA[p2, HighestHigh|[p1]-

LowestLow[p1]]

The handling and the calculations of signals is similar to the Stochastic-
Indictor.

Parameters

Period 1 (default 5)
The period over which to consider highest highs and lowest lows.

Period 2 (default 7)
The period of the first smoothing

Period 3 (default 3)
The period of the second smoothing

High, Low, and Close of Source
The source from which the indicators is calculated.

245

219 GT::Indicators::EMA

Exponential Moving Average

DESCRIPTION

An exponential moving average gives more importance to recent prices ...

Parameters

Period (default 20)
The first argument is the period used to calculate the average.

Other data input
The second argument is optional. It can be used to specify an other
stream of input data for the average instead of the close prices. This
is usually an indicator (detailed via {I:MyIndic <param>}).

Start data input

The third argument is optional. It can be used to specify the stream
of input data to compute the starting point of the moving average.
The default is computed by the SMA of the given period.

If a very long period is required, it may be advisable to set this to
{I:PRICES CLOSE} (or whatever data stream is used as the input
for the EMA) to avoid excessive history data being required just to
compute the starting value. Using the first value of the input series
does not result in a large error and requires no dependencies.

Calculation

alpha = 2 / (N + 1) EMA[n| = EMA[n-1] + alpha * (INPUT - EMA[n-1]
)

In TA, the first value is often constructed as SMA(N).

Note: One criticism could be that the EMA is calculated starting from
the designated period. But actually the EMA goes all the way back to
the beginning of the available data. But in all tools I checked they start
computation from the loaded data on.

Creation

GT::Indicators: :EMA->new()
GT::Indicators: :EMA->new([20])

If you need a 30 days EMA of the opening prices you can write one of
those lines :

246

GT::Indicators: :EMA->new([30, "{I:Prices OPEN}"])
A 10 days EMA of the RST could be created with :

GT::Indicators: :EMA->new([10, "{I:RSI}"1)

247

GT::Indicators::ENV

An envelope is composed of two moving averages. One moving average
is shifted upward and the second moving average is shifted downward.
Envelopes define the upper and the lower boundaries of a security’s normal
trading range.

The standard envelope (ENV 25-6) can be called like that : GT::Indicators:ENV-
>new()

If you need a non standard ENV : GT::Indicators::ENV->new(|21, 5])

GT::Indicators::ENV::calculate($calc, $day)

248

GT::Indicators::EPMA

Overview

The Endpoint Moving Average (EPMA) is focus on divergences between
the original time series and the transposed time series. They may be used
in forecasting applications or as additional inputs for neural analyses.
Calculation

EPMA(n) =[2/ (n* (n + 1))] * Sum of (((3 *i) -n - 1) * Close(i)) from
i=1toi=n

Examples

GT:Indicators:EPMA->new() GT::Indicators: EPMA->new([50]) GT::Indicators::EPMA-
>new([30], "OPEN", $GET OPEN)

Links

http://www.ivorix.com/en/products/tech /smooth/epma.html

249

220 GT::Indicators::EVWMA (Elastic Volume
Weighted Moving Average)

Overview

The Elastic Volume Weighted Moving Average (eVWMA) differs from
usual average in that :

- It does not refer to any underlying averaging time period (for example,
20 days, 50 days, 200 days). Instead, eVWMA uses share volume to define
the period of the averaging.

- It incorporates information about volume (and possibly time) in a natural
and logical way

- It can be derived from, and seen as an approximation to, a statistical
measure and thus has a solid mathematical justification.

to use TEVWMA one must have a database containing the number of
shares floating for each security being analyzed. this shares float database
is only searched for in an xml file at /bourse/metainfo/"$code".xml

currently the beancounter database doesn’t store this security attribute,
nor does beancounter fetch this value in the course of a normal daily
update.

yahoo does provide the attribute via ’f6’, but how one might create the
required xml file based database is not described.

Calculation

eVWMA (0) = Today’s Close eVWMA (i) = ((Number of shares floating
- Today’s Volume) \ * eVWMA (i-1) + Today’s Volume * Today’s Close)
\ / Number of shares floating

Example

GT::Indicators::EVWMA->new()

Links

http://www.christian-fries.de/evwma/ http://www linnsoft.com/tour/techind /evwma.htm

GT::Indicators::EVWMA::calculate($calc, $day)

250

221 GT::Indicators::ElderRay

GT:Indicators::ElderRay->new([13])

INFORMATION

It has been invented by Alexander Elder, and it is explained in his book
"Trading for a living" ("Vivre du trading" in french).

251

222 GT::Indicators::FISH

Overview Infos cited from chart manual at http://www.geocities.com/
user42 kevin/chart/index.html

The fisher transform indicator by John Ehlers is a range oscillator show-
ing where today’s price is within the past N-days highest and lowest, with
some smoothing is used plus what’s known in mathematics as a fisher
transform. This is similar to Stochastics and Williams %R but the trans-
formation stretches values near the high and low, helping to highlight
extremes. =head2 Calculation

The calculation is as follows. The prices used are the midpoint between
the day’s high and low (as in most of Ehlers’ indicators). Today’s price
is located within the highest and lowest of those prices from the past N
days, scaled to -1 for the low and 1 for the high.

price = (high + low) / 2
price - Ndaylow
Ndayhigh - Ndaylow
This raw position is smoothed by a 5-day EMA and a log form which
is the mathematical fisher transform, before a final further 3-day EMA
smoothing.
smoothed = EMA[5] of raw
1 + smoothed

fisher = EMA[3] of 0.5 * log -----——------
1 - smoothed

Parameters

The standard Fisher-Transform works with a 10-days parameter : n = 10

Links http://mesasoftware.com /technicalpapers.htm http://www.geocities

Creation

GT::Indicators: :FISH->new()
GT::Indicators: :FISH->new([20])

252

If you need a 30 days Fisher Transform of the opening prices you can write
one of those lines :

GT::Indicators: :FISH->new([30, "{I:Prices OPEN}"])
A 10 days Fisher Transform of the RSI could be created with :

GT::Indicators::FISH->new([10, "{I:RSI}"])

GT::Indicators::SMI::calculate($calc, $day)

253

223 GT::Indicators::FRAMA

FRactal Adaprive Moving Average

DESCRIPTION

An exponential moving average gives more importance to recent prices ...
similarly a Frama uses a variable (adaptive) alpha

Parameters

Period (default 20)
The first argument is the period used to calculed the average.

Other data input

The second argument is optional. It can be used to specify an other
stream of input data for the average instead of the close prices. This
is usually an indicator (detailed via {I:MyIndic <param>}).

Calculation The alpha is calculated following http://www.mesasoftware.com/technicalpa
see the self explaining code below :D when knowing the alpha

FRAMA is FRAMA[n] = FRAMA|n-1] + alpha * (INPUT -
FRAMA|n-1])

In TA, the first value is often constructed as SMA(N).

Note: One criticism could be that the EMA is calculated starting from
the designated period. But actually the EMA goes all the way back to
the beginning of the available data. But in all tools I checked they start
computation from the loaded data on.

Creation

GT::Indicators: :FRAMA->new()
GT::Indicators: :FRAMA->new([20])

If you need a 30 days FRAMA of the opening prices you can write one of
those lines :

GT::Indicators: :FRAMA->new([30, "{I:Prices OPEN}"])
A 10 days EMA of the RSI could be created with :
GT::Indicators: :FRAMA->new([10, "{I:RSI}"])

note!!! The number of days has to be EVEN!!

254

224 GT::Indicators::Forcelndex

GT::Indicators::ForceIndex->new()

INFORMATION

The force index itself varies too much. To be of any use, you’d better use
a 2 days exponential moving average of it.

It has been invented by Alexander Elder, and it is explained in his book
"Trading for a living" ("Vivre du trading" in french).

255

225 GT::Indicators::FromTimeframe

Get data from an other timeframe

DESCRIPTION

If you need data from an other timeframe (e.g. to determine the trend on
weekly basis), you can use this indicator.

PARAMETERS

Data
A normal indicators-/data-object.

Timeframe
The timeframe you want to get

Days
The number of periods you want to go back in the requested time-
frame.

256

226 GT::Indicators::GAPO

Overview

The Gopalakarishnan Range Index (GAPO) characterizes the price be-
havior of markets. Although GAPO doesn’t generate buy or sell signals,
it does help identify the random behavior of price activity. A higher value
indicates a more erratic market; a lower value indicates consistent price
movement.

Calculation

GAPO = (Log(Highest High (n) - Lowest Low (n))) / Log (n)

Parameters

The standard GAPO index works with a five-day parameter : n = 5

Example

GT::Indicators::GAPO->new() GT::Indicators::GAPO->new([6])

Advice/Idea

I think that the best way to use the results of this indicator is to look after
the average or the moving average of the results, in order to have smooth
data.

GT::Indicators:: GAPO::calculate($calc, $day)

257

227 GT::Indicators::GMEAN

Overview

The geometric mean indicator calculates the geometic mean of each days
high and low. While the arithmetic mean has an equal absolute distance
to high and low, the geometric mean has an equal relative distance to high
and low.

arithmetic mean: high - mean = mean - low geometric mean: high /
gmean = gmean / low

Calculation

gmean = (high * low)"(1/2)

Links

258

228 GT::Indicators::Generic::Abs

Return the absolute value of its 1st parameter

DESCRIPTION

259

NAME

GT::Indicators::Generic::ByName - Alias to another indicator

DESCRIPTION

Sometimes, during the computation of an indicator, one needs to reference
the current value of a series that is being computed by this indicator. If
the current indicator is used explicity, an infinite recursion arises due to
the dependency mechanism.

This indicator resolves the recursion. This indicator is nothing more than
an alias of a series calculated by an indicator. Just give as first parameter
the name of the value to use.

This indicator is used when, during the calculation of an indicator, an
intermediate series wants to leverage another intermediate series or an
output value.

For example,

$self->{’smal’} = GT::Indicators::SMA->new([
$self->{’args’}->get_arg _names(1),
$self->{’args’}->get_arg_names(2) 1);
GT::Indicators::SMA->new([
$self->{’args’}->get_arg_names(1),
"{I:Generic:ByName "

. $self->{’smal’}->get_name . "}" 1);

$self->{’sma2’}

The first statement defines an intermediate series which smoothes the
second parameter. The second statement takes that series and applies
smoothing again. Similarly, the following applies smoothing to the first
output value.

$self->{’sma3’} = GT::Indicators::SMA->new([
$self->{’args’}->get_arg_names(1),
"{I:Generic:ByName " . $self->get_name(0)

Care has to be taken that I:Generic:ByName is in fact given the name of
an indicator, lest that series will not be found. Note that if the series is an
indicator, the name of the series is the name of the selected return value.
The get name method will always retrieve the name of a series.

Remember that the parseable syntax does not yield a name.

260

"D

229 GT::Indicators::Generic::Container

Fake indicator which does nothing but acts as a data container

DESCRIPTION

This indicator can be used to store arbitrary series of data in particular
temporary values used during calculations of complicated indicators. If
you need to calculate the SMA of an expression, you can store the result
of that expression in that indicator.

All arguments passed serves only one purpose : differentiate the various
series of data stored. Care should be taken to ensure the uniqueness of the
indicator name, if there is a chance that several instances of this indicator
are active at the same time (e.g., when used as the long and short signals
of a system).

261

230 GT::Indicators::Generic::Cum

Overview

This function keeps a running total of its input. Each period is calculated,
it adds the current value of the input to the previous total. For example,
{I:Generic:Cum 1} will keep adding 1 for each period of time loaded. In
effect, this counts how many records are currently loaded.

GT::Indicators::Generic::Cum::calculate($calc, $day)

262

231 GT::Indicators::Generic::Diff
Difference between two days

DESCRIPTION

Calculates the difference between the actual value and the value n days
ago.

{L:RSI} 14

263

232 GT::Indicators::Generic::Divide
Calculates Paraml / Param?2

DESCRIPTION

This Indicator is calculation an division of several parameters.

Overview
Calculation
Examples

Links

264

233 GT::Indicators::Generic::Eval

Evaluate the given expression

DESCRIPTION

This indicator evaluates the expression given via its argument. Any indi-
cator is replaced by its current value.

Example of accepted argument list :

int({I:RSI})

1+1

{I:Generic:SignalLength {Signals:Prices:Advance 5}}+1
100 - {I:RSI 10} * 2

The argument list is treated via perl’s eval function so any standard perl
code may be accepted ... but it’s only meant for simple single expression.

265

234 GT::Indicators::Generic::If

Return a value or another depending on a signal

DESCRIPTION

This indicator takes three parameters. First a signal followed by two
indicators. if the signal is true it returns the value of the first indicator,
otherwise it returns the value of the second indicator.

{S:Prices:Advance} {I:Generic:MaxInPeriod 5} {I:Generic:MinInPeriod
5}

{S:Generic:CrossOverUp {I:RSI} 80} {I:SAR} {I:Generic:MaxInPeriod
10}

266

235 GT::Indicators::Generic::Max

Return the max of all parameters

DESCRIPTION

This indicator returns the biggest value of all its parameters.

267

236 GT::Indicators::Generic::MaxInPeriod

Calculate a maximum

DESCRIPTION

This indicator calculates the maximum of any serie of data in the last XX
days or since a given date.

PARAMETERS

Number of days / date

You can specify either a number or a date. In the first case the
maximum will be calculated with the last <number> days. In the
second case it will be the maximum since the given date.

Data

This is the data to use as input. If you don’t specify anything, the
closing price will be used by default.

Example of accepted argument list :
{I:RST}
-01-03

-04-05 {I:Prices HIGH}
"2005-04-05 14:30:00" {I:Prices HIGH}

Al o

268

237 GT::Indicators::Generic::Min

Return the minimum of all parameters

DESCRIPTION

This indicator returns the smallest value of all its parameters.

269

238 GT::Indicators::Generic::MinInPeriod

Calculate a mimimum

DESCRIPTION

This indicator calculates the minimum of any serie of data in the last XX
days or since a given date.

PARAMETERS

Number of days / date

You can specify either a number or a date. In the first case the
minimum will be calculated with the last <number> days. In the
second case it will be the minimum since the given date.

Data

This is the data to use as input. If you don’t specify anything, the
closing price will be used by default.

Example of accepted argument list :
{I:RST}
-01-03

-04-05 {I:Prices LOW}
"2005-04-05 14:30:00" {I:Prices LOW}

Al o

270

239 GT::Indicators::Generic::PeriodAgo

Return data from some periods ago

DESCRIPTION

This function returns N-Period Ago value of the indicator given on argu-
ments. Without indicator, the close price is used.

EXAMPLES

The high of 3 days ago :

I:Generic:PeriodAgo 3 {I:Prices HIGH}

271

240 GT::Indicators::Generic::SignalLength

Length of any signal

DESCRIPTION

This indicator returns the number of consecutive periods where the signal
in parameter has been detected.

272

241 GT::Indicators::Generic::Speed

Speed of a indicator

DESCRIPTION

This function returns today’s value minus yesterday’s value of the indicator
given on arguments. Without indicator, the close price is used.

273

242 GT::Indicators::Generic::Sum

Calculation of the Sum of the last n days

DESCRIPTION

Calculates the Sum of the last n days.

Overview
Calculation
Examples

GT::Indicators::Generic::SumUp->new()

Links

274

243 GT::Indicators::Generic::SumDownDiffs
Calculation of the Sum of the last n days when the price goes down

DESCRIPTION

Calculates the Sum of the difference of the last n days when the price goes
down.

Overview
Calculation
Examples

GT::Indicators::Generic::SumDownDiffs->new()

Links

275

244 GT::Indicators::Generic::SumlIf
Return a sum depending on a signal

DESCRIPTION

This indicator takes three parameters. First a signal followed by a period
and an indicator. It returns the sum of the days where the Signal is true.

{S:Generic:CrossOverUp {I:RSI} 80} 14 {I:SAR}

276

245 GT::Indicators::Generic::SumUpDiffs

Calculation of the Sum of the differences of the last n days when the price
goes up

DESCRIPTION

Calculation of the Sum of the differences of the last n days when the price
goes up.

Overview
Calculation
Examples

GT::Indicators::Generic::SumUpDiffs->new()

Links

277

246 GT::Indicators::HilbertPeriod

Overview
Calculation
Examples

Links

TASC November 2000 - page 108

GT::Indicators::HilbertPeriod::calculate($calc, $day)

278

247 GT::Indicators::HilbertSine

Overview
Calculation
Examples

Links

TASC May 2000 - page 27

279

248 GT::Indicators::IFISH

Overview Remember The Fisher Transform

fisher = 0.5 log --------—---

Its inverse is

exp(2*fisher)-1
ifisher = ———-—mmmmmo
exp(2xfisher)+1

The input values should lie in the Interval [-5,5] so they have to be ad-
justed to this interval. So an Oscillator is moved,scaled,smoothed and

then inverted. Ehlers ist using a WMA for the smoothing I will use an
EMA.

Paramters

The User has to input valid scaling parameters. for the RSI they are 0.1
and 50 so 0.1(RSI-50) varies between -5 and 5. 1. smoothing period 2.
scaling value 3. midpoint adjustment

Links http://mesasoftware.com/technicalpapers.htm

Creation

GT::Indicators: :IFISH->new()

GT::Indicators::SMI::calculate($calc, $day)

280

249 GT::Indicators::InstantTrendLine

Overview
Calculation
Examples

Links

TASC May 2000 - page 22

GT::Indicators::Instant TrendLine

281

::calculate($calc, $day)

250 GT::Indicators::Interquartil

Interquartil-Distance

DESCRIPTION

The Interquartil-distance; which is the position at which you can divide
the data by x% on the left side and (100-x)% on the right side.

Parameters

Percentage
Percentage of the IQD (median = 50%)

Period (default 50)
The first argument is the period used to calculed the average.

Other data input
The Data for the calculation.

Creation

To create a kind of dynamic borders for the RSI try:
Indicators::Interquartil(90,50,{I:RSI}) Indicators::Interquartil (10,50,{I:RSI})

282

251 GT::Indicators::KAMA

Perry Kaufmanns Adaptive Moving Average

DESCRIPTION

This Indicator was developed by Perry Kaufmann and presented in the
book "Trading Systems and Methods, 3rd Ed." in 1998. The KAMA is
automatically adapted to the volatility of the market.

The interpretation is similar to the classic SMA.

Period (default 21)
The first argument is the period used to calculed the average.

Fastest period (default 30)
The fastest period to be considered.

Slowest period (default 2)
The slowest period to be considered.

Creation

GT::Indicators: :KAMA->new()
GT::Indicators: :KAMA->new([10])

283

252 GT::Indicators::Keltner

Keltner Channel

DESCRIPTION

Parameters

Period 1 (default 9)
Period on which the indicator has to be calculated

Constant (default 2)
A constant factor with wich the Average True range is multiplied.

Creation

Link

284

253 GT::Indicators::KirshenbaumBands

Overview

Kirshenbaum Bands are similar to Bollinger Bands, in that they measure
market volatility. However, rather than use Standard Deviation of a mov-
ing average for band with, they use Standard Error of linear regression
lines of the Close. This has the effect of measuring volatility around the
current, trend, instead of measuring volatility for changes in trend.

Author

Paul Kirshenbaum, a money manager and mathematician with PhD in
economics from NYU, submitted this rather unique trading band which is
"de-trended".

GT::Indicators::KirshenbaumBands::calculate($calc, $day)

285

254 GT::Indicators::LinearRegression

This function will calculate an L-Period linear regression line. Note that
the term "linear regression" is the same as a "least squares" or "best fit"
line.

The linear regression value is "a * i + b". iis the day number. a and b
are also provided by the indicator if you want to calculate the value of the
linear regression for other days.

Parameters

Takes 2 or 3 parameters. The first is the period over which the regression
is calculated. The following parameters indicate the series that are being
compared. If there is only a second parameter, this parameter forms
the dependent variables, while the numerical sequence is the independent
parameter. If there are both a second and a third parameter, the former
is the independent and the latter the dependent parameter.

286

GT::Indicators::MACD

The standard Moving Average Convergence Divergence (MACD 12-26-9)
can be called like that : GT::Indicators::MACD->new()

If you need a non standard MACD : GT:Indicators::MACD->new (|20,
50, 15])

GT::Indicators:: MACD::calculate($calc, $day)

GT::Indicators::MACD::calculate _interval($calc, $first,
$last)

287

255 GT::Indicators::MAMA

Mesa Adaptive Moving Average

DESCRIPTION

please see Ehlers work

Parameters

Period (default 20)

Creation

GT::Indicators: :MAMA->new()

288

256 GT::Indicators::MASS

Overview
The Mass Index was designed to identify trend reversals by measuring the
narrowing and widening of the range between the high and low prices.

As this range widens, the Mass Index increases; as the range narrows the
Mass Index decreases.

The Mass Index was developed by Donald Dorsey.

Calculation

Mass Index = A-day sum of the ratio between the B-day EMA of (High -
Low) and the B-day EMA of the B-day EMA of (High - Low)

Parameters

The standard Mass Index is calculated with : A =25 and B =9

Examples

GT:Indicators::MASS->new() GT::Indicators::MASS->new([30, 14])

Links

http://www.equis.com/free/taaz/massindex.html http: //www.charthelp.com /reports/c21.htm

GT::Indicators:: M ASS::calculate($calc, $day)

289

257 GT::Indicators::MEAN

Overview

The mean indicator is simply an average of each days high and low.

Calculation

mean =(high+low)/2

Links

290

258 GT::Indicators::MF1I

Overview

The Money Flow Index (MFI) is a momentum indicator that measures
the strength of money flowing in and out of a security. It is related to
the Relative Strength Index (RSI), but where the RSI only incorporates
prices, the Money Flow Index accounts for volume.

Interpretation

Look for divergence between the indicator and the price action. If the
price trends higher and the MFI trends lower (or vice versa), a reversal
may be imminent.

Look for market tops to occur when the MFT is above 80. Look for market
bottoms to occur when the MFT is below 20.

Calculation

The Money Flow Index requires a series of calculations.
Money Flow = Typical Price * Volume

If today’s Typical Price is greater than yesterday’s Typical Price, it is
considered as a Positive Money Flow and if today’s price is less, it is
considered as a Negative Money Flow.

Positive Money Flow is the sum of the Positive Money over the specified
number of periods. Negative Money Flow is the sum of the Negative
Money over the specified number of periods. The Money Ratio is then
calculated by dividing the Positive Money Flow by the Negative Money
Flow.

Money Ratio = Positive Money Flow / Negative Money Flow
Money Flow Index = 100 - (100 / (1 + Money Ratio))

Parameters

The standard MFI works with a fourteen-day parameter : n = 14

Example

GT::Indicators::MFI->new() GT::Indicators::MFI->new([8])

291

Links

http://www.equis.com/free/taaz/moneyflow.html http: //www.linnsoft.com /tour/techind /mfi.htm

GT::Indicators:: TP::calculate($calc, $day)

292

GT::Indicators::MOM

The standard Momentum is the Momentum 12 days : GT::Indicators::MOM-
>new() If you need a non standard Momentum use for example : GT::Indicators::MOM-
>new([9]) or GT::Indicators::MOM->new([25])

GT::Indicators:: M OM::calculate($calc, $day)

293

259 GT::Indicators::MaxDrawDown

Overview

Calculate the MaxDrawDown, which is the worst percentage loss after
reaching a maximum.

294

260 GT::Indicators::MaxPossibleGain

Shows the maximal Gain for a long-strategy

DESCRIPTION

This indicator calculates the maximum gain that is possible in a certain
period of time. Be aware that this indicator "knows" the future so don’t
use it for your trading strategies :)

PARAMETERS

Number of days
The number of days the indicator looks in the future
Data

This is the data to use as input. If you don’t specify anything, the
high price will be used by default.

295

261 GT::Indicators::MaxPossibleLoss

Shows the maximal Loss for a long-strategy

DESCRIPTION

This indicator calculates the maximum loss that is possible in a certain
period of time. Be aware that this indicator "knows" the future so don’t
use it for your trading strategies :)

PARAMETERS

Number of days
The number of days the indicator looks in the future
Data

This is the data to use as input. If you don’t specify anything, the
high price will be used by default.

296

262 GT::Indicators::OBV

Overview

On Balance Volume (OBV) is a momentum indicator that relates volume
price change.

On Balance Volume was developed by Joe Granville and originally pre-
sented in his book New Strategy of Daily Stock Market Timing for Maxi-
mum Profits.

Calculation

On Balance Volume is calculated by adding the day’s volume to a cumu-
lative total when the security’s price closes up, and subtracting the day’s
volume when the security’s price closes down.

If today’s close is greater than yesterday’s close then : OBV = Yesterday’s
OBV + Today’s Volume

If today’s close is less than yesterday’s close then : OBV = Yesterday’s
OBV - Today’s Volume

If today’s close is equal to yesterday’s close then : OBV = Yesterday’s
OBV

Example

GT::Indicators::OBV->new()

Links

GT::Indicators::OBV::calculate($calc, $day)

297

263 GT::Indicators::PERF

The performance indicator display a security’s price performance from
a reference day as a percentage. If the market is not available for the
reference day, use nearest preceding day.

Note: The day must be given in GT internal format and must match the
timeframe.

Example : GT::Indicators:PERF->new(["2001-09-22"]); GT::Indicators::PERF-
>new(["2001-09-22", "{I:Prices VOLUME}"]);

GT::Indicators:: PERF::calculate($calc, $day)

298

264 GT::Indicators::PFE

Polarized Fractal Efficiency

DESCRIPTION

Parameters

Period (default 10)
The first argument is the period used to calculed the average.

Period 2 (default 5)
Period in which the EMA is calculated.

Exponent (default 2)

Correction-Factor (default 1)
Set this factor to 200 for values > 1000

Datasource

Creation

Link

299

265 GT::Indicators::PFE

Polarized Fractal Efficiency

DESCRIPTION

Parameters

Period (default 10)
The first argument is the period used to calculate the average.
Exponent (default 2)

Correction-Factor (default 1)
Set this factor to 200 for values > 1000

Datasource

Creation

Link

300

266 GT::Indicators::PGO

Overview

The Pretty Good Oscillator (PGO) ...

Calculation

PGO = (Close - N-Day SMA of Close) / N-Day EMA of True Range)

Parameters

N =89

301

267 GT::Indicators::PP

Overview

Pivot Points and Daily Support and Resistance.

Calculation

The calculation for the new day are calculated from the High (H), low (L)
and close (C) of the previous day. Pivot point = P = (H + L + C)/3
First area of resistance = R1 = 2P - L First area of support = S1 = 2P -
H Second area of resistance = R2 = (P -S1) + R1 Second area of support
—82="P-(R1-S1)

Links

http://www.sixer.com/y/s/education/tutorial /edpage.cfm?f=pivots.cfm&OB=indicators
http://www.tradertalk.com/tutorial /Pivpt.html

GT::Indicators::PP::calculate($calc, $day)

302

268 GT::Indicators::PercentagePosition

Relative Position in a certain period

DESCRIPTION

This indicators calculates the realtive position in a period. Zero means
that a new low is reached and 100 corresponds to a new high.

PARAMETERS

Period 1
The number of days in which the indicator looks for a high /low.

Indicator

The source

303

269 GT::Indicators::Prices

Return the prices/volume/date of any share

DESCRIPTION

As you often need the prices while using Generic indicators, this modules
makes it easy for you to include prices through an indicator: {I:Prices
OPEN} or {I:Prices LOW 13330}

PARAMETERS

Data
You have to tell in which data you’re interested. You have to choose
between OPEN, HIGH, LOW, CLOSE, VOLUME, DATE.

Share

If you don’t specify a second argument, you will use the data of the
share that you're working on. But sometimes you may want to use
the prices of a second share (for comparison, etc). In that case you
can specify its code.

304

270 GT::Indicators::QSTICK

Overview

The QStick indicator was designed by Tushar Chandle to quantify candel-
sticks.

The distance between opening and closing prices, as known as the size of
the candelstick’s body, is the heart of candelsticks studies. The QStick
indicator is a simple moving average of theses distances.

Interpretation

QStick values below zero show that there is a majority of black candel-
sticks, so that the stock is under pressure. QStick values upper zero show
that there is a majority of white candelsticks, so that the stock is going

up.
Note

I don’t really like the terms ’majority of black candelsticks’ and ’major-
ity of white candelsticks’, i prefer to talk about 'negative volatility’ and
'positive volatility’. Moreover, it might be more usefull to calculate the
QStick with the percentage deviation corrected by the standard deviation

instead of the absolute deviation, in order to compares gstick values or to
think about levels crossover.

Calculation

QStick Indicator = A-day simple moving average (SMA) of (Close - Open)

Examples

GT::Indicators::QSTICK->new() GT::Indicators::QSTICK->new([20])

Links

http://www.metastock.fr/QSTICK.htm

GT::Indicators::QSTICK::calculate($calc, $day)

305

271 GT::Indicators::RAVI

RAVI Trendindicator

DESCRIPTION

The RAVI is a simple yet efficient trendindicator. It is calculated as
follows:

RAVI = ABS (100 * (SMA(Short) - SMA(Long)) / SMA(Long))

The long Period divided by the short should always be 10. A Trend is
indicated if the RAVI crosses the 3%-level.

Parameters

Short Period (default 7)
The first argument is the period used to calculed the short average.

Long Period (default 65)
The second argument is the period used to calculed the long average.

306

272 GT::Indicators::REMA

Regularized Exponential Moving Average

DESCRIPTION

Regularized EMA This modification of the classical EMA is described
in Stock&Commodities (July 2003). It is an adaption that includes the
momentum / second derivation of the value into the MA.

It should be used for the calculation of the MACD. The classical EMA is
calculated as:

F(n+1)=F(n)+A*|G(n+1)-F(n)] — A(alpha): A=2/(Period+1)
The REMA is calculated as followed:

F(n+1)={F (n) * (1+2*L) +A* [G(n+1) -F (n)] -L* [F (n-1) 1}/ (1+L)

with L(Lambda) as Regularization Factor.
Lambda should be > 0.5

Parameters

Period (default 20)

The first argument is the period used to calculed the average.
Lambda (default 0.5)

See above
Other data input

The second argument is optional. It can be used to specify an other
stream of input data for the average instead of the close prices. This
is usually an indicator (detailed via {I:MyIndici<param>}).

307

273 GT::Indicators::RMI

Relative Momentum Index

DESCRIPTION

Parameters

Period (default 5)
The first argument is the period used to calculed the average.

Moment distance (default 10)

Creation

GT::Indicators: :RMI->new()
GT::Indicators: :RMI->new([10,20])

Links

http://www.geocities.com/burzum_ 3/rmi.html

308

GT::Indicators::ROC
The Rate of Change (ROC) is similar to the Momentum. The standard
Rate of Change is the ROC 12 days : GT::Indicators::MOM->new() If you

need a non standard Momentum use for example : GT::Indicators:: MOM-
>new([9]) or GT::Indicators::MOM->new([25])

Validation

This Indicator was validated by the data available from comdirect.de: The
DAX at 04.06.2003 (data from yahoo.com) had a ROC of 8.05. This is
consistent with this indicator: 8.0451

GT::Indicators::ROC::calculate($calc, $day)

309

274 GT::Indicators::RSI

Relative Strength Index

DESCRIPTION

The standard RSI is the RSI 14 days : GT::Indicators::RSI->new() If
you need a non standard RSI use for example : GT::Indicators::RSI-
>new([25])

Validation

This indicators is validated by the values from comdirect.de. The stock
used was the DAX (data from yahoo) at the 04.06.2003:

RSI[14,{I:Prices CLOSE}|[2003-06-04] = 57.5433 (comdirect=57.54)

310

275 GT::Indicators::RSquare

Overview

This function calculates the R-Squared coefficient.

Calculation

Pwr(Corr(Cum(1),C,14,0),2)

GT::Indicators::RSquare::calculate($calc, $day)

311

276 GT::Indicators::Range

The range is nothing more than the difference between the high and the
low of the day.

GT::Indicators::Range::calculate($calc, $day)

312

277 GT::Indicators::SAR

Overview

The Parabolic SAR, developed by Welles Wilder, is used to set trailing
price stops. SAR refers to "Stop-And-Reversal". It is designed to create
exit points for both long and short positions in such a way that it allows
for reactions or fluctuations at the beginning of the position, but acceler-
ates upward (for long positions) or downward (for short positions) as the
movement tops out.

Calculation

If Long : SAR(i) = SAR(i-1) + Acceleration Factor * (Extreme Point of
the current position - SAR(i-1))

Wilder’s acceleration factor (AF) is 0.02 for the initial calculation. There-
after the AF is increased 0.02 every period there is a New High made. If
a new high is not made then the AF is not increased from the last SAR.
This continues until the AF reaches 0.2. Once the AF reaches 0.2 it stays
at that value for all future SAR calculations until the trade is stopped out.

If Short : SAR(i) = SAR(i-1) - Acceleration Factor * (Extreme Point of
the current position - SAR(i-1))

The AF is initially 0.02 and changes by 0.02 intervals until it is 0.2 but the
change in the AF is made only after each New Low of a period is made.
The AF is never increased above 0.2.

Parameters

Most softwar packages only allow the user to vary the acceleration fac-
tor increment and the acceleration factor maximum, fixing the starting
acceleration factor at 0.02. This restriction hampers the trend-following
abilities of the parabolic, so don’t be surprised if GeniusTrader is going a
little step further and let you set up your own initial acceleration factor.

Links

http://www.stockcharts.com/education/Resources/Glossary /parabolicSAR .html
http://www.equis.com/free/taaz/parabolicsar.html http: //www.linnsoft.com /tour/techind /sar.htm

GT::Indicators::SAR::calculate($calc, $day)

313

278 GT::Indicators::SMA

Simple Moving Average

DESCRIPTION

A simple arithmetic moving average.

Parameters

Period (default 50)
The first argument is the period used to calculed the average.

Other data input

The second argument is optional. It can be used to specify an other
stream of input data for the average instead of the close prices. This is
usually an indicator (detailed via {I:MyIndic| <param>}) but it can
also be "{I:Prices OPEN}", "{I:Prices HIGH}", "{I:Prices LOW}",
"{I:Prices CLOSE}", "{I:Prices FIRST}" and "{I:Prices LAST}"
and in which cases the corresponding prices serie will be used.

Creation

GT::Indicators: :SMA->new()
GT::Indicators: :SMA->new([20])

If you need a 30 days SMA of the opening prices you can write the following
line:

GT::Indicators: :SMA->new([30, "{I:Prices OPEN}"])
A 10 days SMA of the RSI could be created with :

GT::Indicators::SMA->new([10, "{I:RSI}"])

314

279 GT::Indicators::SMI

Overview

The Stochastic Momentum Index (SMI) is based on the Stochastic Os-
cillator. The difference is that the Stochastic Oscillator calculates where
the close is relative to the high /low range, while the SMI calculates where
the close is relative to the midpoint of the high/low range. The values
of the SMI range from +100 to -100. When the close is greater than the
midpoint, the SMI is above zero, when the close is less than than the
midpoint, the SMI is below zero.

The SMI is interpreted the same way as the Stochastic Oscillator. Ex-
treme high/low SMI values indicate overbought/oversold conditions. A
buy signal is generated when the SMI rises above -50, or when it crosses
above the signal line. A sell signal is generated when the SMI falls below
+50, or when it crosses below the signal line. Also look for divergence
with the price to signal the end of a trend or indicate a false trend.

The Stochastic Momentum Index was developed by William Blau and was
introduced in his article in the January, 1993 issue of Technical Analysis

of Stocks & Commodities magazine.

Calculation

CM = Close - (Highest high(n) + Lowest low(n)) / 2 CM’ = EMA(EMA(CM,
A), B) HL = Highest high(n) - Lowest low(n) HL” = EMA(EMA(HL, A),

B)

%K — 100 * CM’ / (HL’ / 2) %D — SMA(%K)

Restrictions

This indicator requires that the first four parameters are constant values
and will abort otherwise.

Examples

GT::Indicators::SMI->new() GT::Indicators::SMI->new([14, 3, 3, 3])

Links
http://www.fmlabs.com/reference/default.htm?url=SMI.htm http://trader.online.pl/MSZ /e-

w-Stochastic_ Momentum Indicator.html (note that the former incorrectly
uses "-" in CM).

315

GT::Indicators::SMlI::calculate($calc, $day)

316

280 GT::Indicators::STO

Overview

Developed by George C. Lane in the late 1950s, the Stochastic Oscillator is
a momentum indicator that shows the location of the current close relative
to the high/low range over a set number of periods. Closing levels that
are consistently near the top of the range indicate accumulation (buying
pressure) and those near the bottom of the range indicate distribution
(selling pressure).

Calculation

%K Fast = 100 * ((Last - Lowest Low(n)) / (Highest High(n) - Lowest
Low(n))) %D Fast = M-periods SMA of %K Fast

%K Slow = A-periods SMA of K Fast
%D Slow = B-periods SMA of %K Slow
possibly helpful information:

%K Fast corresponds to STO/1, %D Fast to ST0/2, %K Slow to ST0/3
and %D Slow to ST0/4

%K Slow may also be known as the stochastic oscillator
%D Slow is also known as the signal line

arguments and defaults for STO

STO accepts 7 arguments, the defaults are, in order: 5, 3, 3, 3, {I:Prices
HIGH}, {I:Prices LOW}, {I:Prices CLOSE}

The first argument is the Period n used in the formula above and for
each of the subsequent SMA periods.

The second argument is M-periods, the third is A-periods, fourth is B-periods.

By default the data used is price, which can be changed by specifying
different indicators. the order is High(n), Low(n), Last in the %K Fast
formula above.

Note that Metastock calculates the slowing via a sum of the last M-periods,
rather than a SMA. Metastock displays %K Slow and %D Slow.

317

Examples

GT::Indicators::STO->new() GT::Indicators::STO->new([14, 3, 3, 3|)

Links

http://www.stockcharts.com/education/What /IndicatorAnalysis /indic_stochasticOscillator.html
http://www.equis.com/free/taaz/stochasticosc.html

GT::Indicators::STO::calculate($calc, $day)

318

281 GT::Indicators::SWMA

The Sine-Weighted Moving Average (SWMA) is a moving average using
a sine factor to take into account both time and price movements. Very
good at catching tops and bottoms, while filtering out unnecessary noise.

Calculation

SWMA = (Sum of (sin(n*180/6*PI/180) * Close(i)) for i = 1 to i =
period) / (Sum of (sin(n*180/6*P1/180)) for i = 1 to i = period)

Examples

GT::Indicators::SWMA->>new() GT::Indicators::SWMA->new([30, {I:Prices
OPEN}])

Links

http://www.ivorix.com/en/products/tech /smooth /swma.html

GT::Indicators::SWMA::calculate($calc, $day)

319

GT::Indicators::SafeZone

The SafeZone stop is described in Dr. Alexander Elder’s Book "Come into
my Trading Room" and provides stops for closing long or short positions.

It accepts the number of bars to use for the calculation and a coefficient
as parameters with 20 and 2 being the defaults that are also used in
the examples in the book. The last parameter is the number of days a
"plateau" is maintained regardless of of prices moving against the trade.
This is to take into account the fact that stops may only be extended
in the direction of the trade. After prices have been moving against the
trade for the number of bars that is specified by the third parameter it is
assumed that the stop was triggered and normal calculation of new stops
is resumed.

If this doesn’t seem to make sense just plot this indicator and you will
know what I am trying to say. :)

GT::Indicators::SafeZone::calculate($calc, $day)

320

282 GT::Indicators::StandardDeviation

Overview

Standard Deviation is a statistical measure of volatility. Standard Devi-
ation is typically used as a component of other indicators, rather than as
a stand-alone indicator. For example, Bollinger Bands are calculated by
adding a security’s Standard Deviation to a moving average.

Interpretation

High Standard Deviation values occur when the data item being analyzed
(e.g., prices or an indicator) is changing dramatically. Similarly, low Stan-
dard Deviation values occur when prices are stable.

Many analysts feel that major tops are accompanied with high volatility
as investors struggle with both euphoria and fear. Major bottoms are
expected to be calmer as investors have few expectations of profits.

Links

http://www.equis.com/free/taaz/standardevia.html

321

283 GT::Indicators::StandardError

Overview

Standard Error is a statistical measure of volatility. Standard Error is typ-
ically used as a component of other indicators, rather than as a stand-alone
indicator. For example, Kirshenbaum Bands are calculated by adding a
security’s Standard Error to an exponential moving average.

Calculation

Calculate the L-Period linear regression line, using today’s Close as the
endpoint of the line. Note : The term "linear regression" is the same as
"least squares" or "best fit" line in some textbooks.

Calculate d1, d2, d3, ..., dL as the distance from the line to the Close of
each bar which was used to derive the line. That is, d(i) = Distance from
Regression Line to each bar’s Close.

Average of squared errors (AE) = (d18 + d2§ + d38 + ... + dL§) /L
Standard Error = Square Root of AE

322

284 GT::Indicators::T3

Overview

T3 is an excellent data-fitting technique by Tim Tillson (cf. "Smoothing
Techniques For More Accurate Signals" in Technical Analysis of Stocks
and Commodities - January 1998)

Calculation

N is the Exponential Moving Average Period a is the amplification per-
centage of the filter’s response to price movement (0 < a < 1)

el = N-days EMA of Close Prices €2 = N-days EMA of el e3 = N-days
EMA of €2 e4 = N-days EMA of e3 e5 = N-days EMA of e4 e¢6 = N-days
EMA of e

cl=(a)"3c2=3*%a"2c3=-6%a"2-3%a-3%a3c4d=1+3%*a
+a"3+3*a"2
T3 =cl*e6 +c2*ed +c3*ed + cd *e3

GT::Indicators::T3::calculate($calc, $day, $args, $key,
$data)

323

285 GT::Indicators:: TDREI

Tom Demarks REI

DESCRIPTION

A new oscillator introduced by Tom DeMark.

Parameters

Momentum (default 2)
Period (default 10)

Creation

GT::Indicators: :TDREI->new()

Links

324

286 GT::Indicators:: TETHER

Tether Line

DESCRIPTION

The Tether Line is one of the three indicators used in Trend Following
System (TFS), designed by Bryan Strain.

CALCULATION

Tether Line = (Highest High (n) + Lowest Low (n)) / 2

PARAMETERS

The standard Tether Line works with a 50-day parameter : n = 50

EXAMPLE

GT::Indicators::TETHER->new() GT::Indicators: TETHER->new([30])

GT::Indicators:: TETHER::calculate($calc, $day)

325

287 GT::Indicators:: TMA

Overview

Triangular Moving Averages (TMA) place the majority of the weight on
the middle portion of the price series.

Calculation

TMA(5) = (1/9) * (1 * Close(i) + 2 * Close(i - 1) + 3 * Close(i - 2) + 2
* Close(i - 3) + 1 * Close(i - 4))

Examples

GT::Indicators:: TMA->new() GT::Indicators:: TMA->new([50]) GT::Indicators:: TMA-
>new([30], {I:Prices OPEN})

Links

http://www.equis.com /free/taaz/movingaverages.html http://www.ivorix.com /en/products/tech /sn

GT::Indicators::TMA::calculate($calc, $day)

326

288 GT::Indicators:: TP

Overview
The Typical Price indicator provides a simple, single-line plot of the day’s

average price. Some investors use th Typical Price rather than the closing
price when creating moving average penetration systems.

The Typical Price is a building block of the Money Flow Index.

Calculation

The Typical Price indicator is calculated by adding the high, low and
closing prices together, and then dividing by three. The result is the
average, or typical price.

Note

The Typical Price is sometimes called "Pivot Point".

Validation

This indicator is indirectly validatet by I:CCI.

GT::Indicators::TP::calculate($calc, $day)

327

289 GT::Indicators:: TR

True Range

DESCRIPTION

The True Range (TR) is designed to measure the volatility between two
days.

Calculation

The True Range is defined as the greatest of the following :

- The current high less the current low. - The absolute value of : current
high less the previous close. - The absolute value of : current low less the
previous close.

Validation

The TR is not directly validated but the ATR matches the data from
comdirect.de.

Links

http://www.stockcharts.com /education/What /IndicatorAnalysis/indic_ ATR.html
http://www.equis.com/free/taaz/avertrurang.html

328

290 GT::Indicators::TRIX

TRIX-Indicator from Jack Hutson

DESCRIPTION

The TRIX-Indicator was developed by John Hutson. It is a 1-day-ROC
of a threefold EMA (A EMA of a EMA of a EMA). It is calculated as:

TRIX = 100 * (EMA3(t) - EMA3(t-1)) / EMA3(t-1)

The standard interpretation is that a signal is generated if the TRIX cuts
the zero-line. It is a relative stable yet not very effective indicator because
it generates the signals very late. You can combine the TRIX with an
EMAJ9] to generate MACD-like signals.

Parameters

Period (default 5)
The first argument is the period used to calculed the average.

Creation

GT::Indicators: :TRIX->new()
GT::Indicators: :TRIX->new([20])

Link

http://www.incrediblecharts.com/technical/trix_indicator.htm

329

291 GT::Indicators::Test

Indicator to test embedding of indicators

DESCRIPTION

This indicator functions as a test rig to ensure that another indicator is
robust in the presence of complex embedding into other indicators.

It is not generic, unfortunately, but tests indicators only with respect to
their first argument.

Use it as follows:

./display_indicator.pl --start=2000-06-16 --end=2000-06-29 \
I:Test 13000 60 60 60 SMA Generic::MaxInPeriod

This will test the SMA; the second indicator Generic::MaxInPeriod is only
there to add complexity. It defaults to Generic::MinInPeriod.

This test will do the following:

1. Apply Argb to Arg6, using Argl as parameter (by default: {I:Generic:MinInPeriod
5 {I:Prices CLOSE}} 2. Smooth the result by Arg4, using Arg2 as pa-

rameter (by default: {lEMA 3 ...} 3. Smooth the result by Arg4, using

Arg3 as parameter (by default: {LEMA 3 ...}

The first output is the result (3), the second output is the result (1).

GT::Indicators::Test::calculate($calc, $day)

330

292 GT::Indicators::UI

Overview
The Ulcer Index (UI) is a risk measurement tool superior to the standard
deviation because it differentiates between rising returns and losses. In-

vestors do not view a set of rising returns as a negative sign of volatility,
after all; one of the investor goals is to avoid losses.

Calculation

It is the square root of the average of the squared retracements from the
latest high.

Example

GT::Indicators::UI->new()

GT::Indicators::Ul::calculate($calc, $day)

331

293 GT::Indicators::VHF

Overview

The Vertical Horizontal Filter (VHF) can tell you whether a market is
going through a trending or congestion phase, and whether you should
use trend-following indicators if the markets are trending or congestion-
phase indicators if markets are in a trading range.

Calculation

VHF = (Highest Close (n) - Lowest Close (n)) / (Sum of absolute value
of the one-day price change for the range (n))

Parameters

The standard VHF works with a 28-days parameter : n = 28

Example

GT::Indicators::VHF->new() GT::Indicators::VHF->new([50])

Links

http://www.equis.com/free/taaz/verthorizfilter.html http: / /www.finance-
net.com/apprendre/techniques/vhf.phtml

GT::Indicators:: VHF::calculate($calc, $day)

332

294 GT::Indicators::VOSC -

OVERVIEW
CALCULATION
EXAMPLES

GT::Indicators::VOSC->new() GT::Indicators::VOSC->new([20])

LINKS

333

295 GT::Indicators::VROC

Overview

The VROC is the Volume Rate Of Change.

Calculation

VROC = ((Volume(i) * 100) / Volume(i-n)) - 100

Parameters

The standard VROC is equal to GT::Indicators:ROC->new([12], "VOL-
UME", $GET_VOLUME)

Example

GT::Indicators::VROC->new() GT::Indicators::VROC->new([20])

GT::Indicators:: VROC::calculate($calc, $day)

334

296 GT::Indicators::WMA

Overview

The Weighted Moving Average (WMA) is designed to put more weight on
recent data and less weight on past data. A weighted moving average is
calculated by multiplying each of the previous day’s data by a weight.

Calculation

WMA(5) = (1/15) * (5 * Close(i) + 4 * Close(i - 1) + 3 * Close(i - 2) +
2 * Close(i- 3) + 1 * Close(i - 4))

Examples

GT::Indicators:: WMA->new() GT::Indicators:: WMA->new([50]) GT::Indicators:: WMA-
>new([30], "OPEN", SGET OPEN)

Links

http://www.equis.com/free/taaz/movingaverages.html

GT::Indicators:: WM A::calculate($calc, $day)

335

297 GT::Indicators::WTCL

Overview
The Weighted Close indicator is simply an average of each day’s price. It

gets its name from the fact that extra weight is given to the closing price.
The Median Price and Typical Price are similar indicators.

Calculation

The Weighted Close indicator is calculated by multiplying the close by
$weight, adding the high and the low to this product, and dividing by (2
+ $weight). The result is the average price with extra weight given to the
closing price.

Parameters

The standard Weighted Close is configured with : $weight = 2.

Links

http://www.equis.com/free/taaz/weightedclose.html http: //www.futuresource.com/industry /wtcl.as

GT::Indicators:: WTCL::calculate($calc, $day)

336

298 GT::Indicators::WWMA

Welles Wilder Moving Average (WWMA) is a modified verson of the EMA.

Calculation

WWMA(i) = (1/n) * Close(i) + (1 - 1/n) * WWMA(i-1)

Examples

GT::Indicators:: WWMA->new() GT::Indicators:: WWMA->new([15]) GT::Indicators: WWMA-
>new([30], "OPEN", $GET_OPEN)

299 NOTICES

this version of Welles Wilder Moving Average (WWMA) is depreciated in
favor of Wilders (GT::Indicators::Wilders).

GT::Indicators::WWMA::calculate($calc, $day)

337

300 GT::Indicators::Wilders

Wilder’s smoothing (aka wells wilders moving average)

DESCRIPTION

Wilder’s smoothing is using simple averages for the initial calculation.
For the subsequent average calculations, he drops 1/14th of the previous
average value and adds 1/nth of the new value. This is the "classic"
exponential average, in which the smoothing factor is 1/n, instead of the
"modern" exponential average, in which the smoothing factor is 2/(n+1).

Wilders(i) = (1/n) * Close(i) + (1 - 1/n) * Wilders(i-1)

Parameters

Period (default 14)
The first argument is the period used to calculed the average.

Other data input

The second argument is optional. It can be used to specify an other
stream of input data for the average instead of the close prices. This
is usually an indicator, including I:Prices.

Creation

GT::Indicators: :Wilders->new()
GT::Indicators: :Wilders->new([20])

If you need a 30 days Wilders of the opening prices you can write the
following line:

GT::Indicators::Wilders->new([30, "{I:Prices OPEN}"])
A 10 days Wilders of the RSI could be created with :

GT::Indicators::Wilders->new([10, "{I:RSI}"1)

338

301 GT::Indicators::WilliamsR

Overview

Williams %R is a momentum indicator developed by Larry Williams that
measures overbought /oversold levels.

Calculation

The formula used to calculate Williams’ %R is similar to the Stochastic
Oscillator :

Williams %R = - 100 * ((Highest High (n) - Close) / (Highest High (n) -
Lowest Low (n)))

Parameters

The standard Williams %R, works with a 14-days parameter : n = 14

Validation

This Indicator was validated by the data available from comdirect.de: The
DAX at 04.06.2003 (data from yahoo.com) had a Williams %R of -5.99.
This is consistent with this indicator: -5.99328026152501

Links

http://www.equis.com/free/taaz/williamspercr.html

GT::Indicators::Williams%R::calculate($calc, $day)

339

302 GT::Indicators::ZigZag

DESCRIPTION

The Zig Zag indicator filters out changes in an underlying plot (e.g., a
security’s price or another indicator) that are less than a specified amount.
The Zig Zag indicator only shows significant changes.

Parameters

Percentage change (10%)

The first argument is the percentage change required to yield a line
that only reverses after a change from high to low of 10% or greater.

Creation

GT::Indicators: :ZigZag->new()
GT::Indicators::ZigZag->new([5])

If you need an 8 % ZigZag indicator of the opening prices you can write
one of those lines :

GT::Indicators::SMA->new([8], "OPEN", $GET_OPEN)
GT::Indicators: :SMA->new([8, "OPEN"])

A ZigZag indicator with a 20 % threshold of the Volume could be created
with :

GT::Indicators: :ZigZag->new([20, "{I:Volumel}"])

340

303 GT::List

List of symbols (shares)

DESCRIPTION

This package provide some simple functions to work with a list of symbols.

Example

Create an empty GT::List object : my $list = GT::List->new();

Load data from a list of symbol : $list->load(" /bourse/listes/us/nasdaq");
Add a symbol in a list : $list->add("GeniusTrader");

Remove a symbol in a list : $list->remove("GeniusTrader");

Save list in a file : $list->save(" /bourse/listes/us/nasdaq");

Find how many symbols are in a list : $list->count();

Get symbol number $i : $list->get($i);

Functions

$list->get ($i)

Get symbol number $i.
$list->add("symbol")

Add a symbol in a list.
$list->remove($i)

Remove the symbol number $i.
$1list->count ()

Find how many symbols are in the list.
$list->load("1list_of_symbol.txt")

Load data from a list of symbol.
$list->save("list_of_symbol.txt")

Save list in a file.

341

304 GT::MarketCalculator

Calculator-like for Markets

DESCRIPTION

THIS OBJECT IS NOT USED ANYWHERE AT THE PRESENT TIME

This is a facility object to ease the collaboration of between GT::List,
GT::CacheValues and GT::Metalnfo

my $market = GT::Markets->new($list [, $name])

Create a new GT:Markets object with $list used for calculations.
The market is associated to market $name.

$market->indices()
$market->indicators()
$market->signals()

$market->metainfo ()
Return the corresponding object that is part of GT::Markets.

$market->set_name($name)

Set market object name.

$market->name ()

Return market object name.

342

305 GT::Metalnfo

Keep various meta informations

DESCRIPTION
Goal

This object is used to gather meta informations of different kinds applying
to various objects (state of a trading system, history of order, support &
resistance of prices, top & bottom prices on a period, lines drawn on a
graph, ...). It stores various informations in an internal XML structure
that can be stored in a file and reloaded later.

Informations are stored on a key/value basis. Key is a path in an XML
DOM tree (/ is the separator like for xpath expressions). Several values
can be stored in a single key if you use attributes to distinguish them.

API

my $info = GT::Metalnfo->new;
Create a new empty GT::Metalnfo object.
$info->set($key, $value, { "attrname" => "attrvalue" 1});

Stores $value corresponding to $key with an attribute "attrname"
(whose value is "attrvalue"). The third parameter is optional if you
don’t need attributes for this key.

If the key already existed, then the value is replaced.

$info->get ($key, { "attrname" => "attrvalue" 1});
Get the value corresponding the $key and the attributes indicated in
the second optional argument.

my Q@list = $info->1list($key, { "attrname" => "attrvalue" });

List all the set of attributes available for elements corresponding to
the $key. You can eventually restrict the list to a subset og them by
specifying one or more attributes.

Each element of @list is a hash describing the attributes. If you want

the value of that node you have to use $info->get(...).
$info->load("/path/to/file.xml")

Load the XML file as Metalnfo object.
$info->save("/path/to/file.xml")

Save the current GT::Metalnfo object in the given XML file. All
values previously set can be reloaded later with $info->load(...).

343

$info->dump
Output the current internal XML file to the standard output. Useful
for debug purposes.

344

306 GT::MoneyManagement

Money management rules (risk management)

DESCRIPTION

Money management rules decide or modify the sum of money placed on
each trade. On the extreme side, they can cancel an order by deciding
that 0 shares should be bought /sold.

$mm_rule->manage_quantity($order, $i, $calc, $portfolio)
Return the quantity that the money management rule would put on
the given order. $order->{’quantity’} may be already set by a pre-
vious money management rule. Never modify the quantity directly
but return the new proposed quantity.

345

307 GT::MoneyManagement::Alembert

Introduction

The d’Alembert System is a progression system which tries to win back
your losses in small steps instead of all at once like the Martingale. It was
designed for use on the even chance bets on a roulette table but can be
used on any even chance bet.

Concept

The d’Alembert System works under the assumption that over a period
of time there will be an equal number of ‘reds’ and ‘blacks’. We start the
session by placing one unit ($1, $5 or any other value) on one of the even
chance bets (e.g. ‘red’), after a losing spin we increase the next bet by
one unit and after a winning bet we decrease the next bet by one unit.
So if we were betting oin ‘red’ and the spins were - black, black, black,
red, black, red, red, black, red, red, red - then the bets placed would be
as follows (the numbers in brackets show the level of your bankroll after
the spin):

1 ('1)7 2 ('3)7 3 ('6)7 4 ('2)7 3 ('5)1 4 ('1)7 3 (+2)7 2 (+0)7 3 (+3)7 2 (+5)a
1 (+6)

This sequence would end with a win of $6. As you can see, as soon as
the number of ‘reds’ is equal to the number of ‘blacks’ plus one then the
sequence ends with a win. You may also notice that after the 7th, 9th and
10th spins we were also showing a profit, this is because the bets placed on
winning spins are one unit greater than the previous losing spin. Having
the possibility of a positive bankroll before the sequence is complete allows
us to choose to cut the session short and take a smaller win rather than
risking the chance of the session ending badly.

Links

http://www.casino-help.com /systems/dalembert.shtml

346

308 GT::MoneyManagement::AntiMartingale

Introduction

Before reading this you should look at the Martingale system. This system
is designed for use on the even chance bets on a roulette table but can be
used on any even chance bets.

Concept

Playing the Anti-Martingale is precisely what the name suggests, it’s the
Martingale in reverse. Instead of doubling your bets after a losing spin
you double your bet after a winning spin. Basically you place a bet on
an even chance and ‘let it ride’ for a set number of spins. Before starting
the system you must decide how many spins you are going to play for,
alternatively you may decide to remove your winnings when your nerve
breaks or even remove part of the winnings after a number of spins and
let the remaining bet continue for a little bit longer.

Links

http://www.casino-help.com /systems/martingale.shtml http:/ /roulette.casino.com/article.pl/aid=m

347

309 GT::MoneyManagement::Basic

Basic and dumb money management rules. Invest all cash available (pro-
vided that no marged position block the cash - in this money management
rule each dollar invested in marged position requires 1 dollar in cash).

348

310 GT::MoneyManagement::CheckCommissions

Overview

This money management rule will keep an eye to the size of each trade.
Trade only when commissions represents less than a fixed percentage of
the investment.

Parameters

By default, we will accept all trades where commissions represents less
than 1 % of the investment and reject others.

349

311 GT::MoneyManagement::CheckVolumeAverage

Overview

This money management rule will keep an eye to the size of each trade to
remain them below a fixed percentage of the n-days volume average.

Parameters

By default, we will accept all trades representing less than 1 % of the 5
days average volume and reject others.

350

312 GT::MoneyManagement::FixedFractional

Overview

This money management rule will allowed to each trade a fixed fraction
of the current portfolio value.

351

313 GT::MoneyManagement::FixedRatio

Overview

This money management rule is described in Ryan Jones’s book "The
Trading Game" as an alternative to the standard Fixed Fractional type of
money management rules.

352

314 GT::MoneyManagement::FixedShares

Overview

This money management rule will allowed to each trade exactly the same
number of shares. The default number is set up to 100 shares.

353

315 GT::MoneyManagement::FixedSum

Overview

This money management rule will invest the same amount of money in
each trade. The default value is set up to 1000.

354

316 GT::MoneyManagement::Martingale

Introduction

The Martingale system is probably the oldest of betting systems, many
other systems are based on the basic theory of the Martingale, and so to
evaluate most systems you need a full understanding of the Martingale.

Concept

The Martingale is a progression system (i.e. you increase your bet after a
losing spin) played on the even chance bets on a roulette table although
it can be used on even chance bets on other games, and the basic idea is
that if you bet on one of the even chance bets (e.g. Red) eventually it will
hit. With this in mind, if you increase your bets after each losing spin so
that you win back all your losses plus one unit you will always walk away
a winner. In order to win all previous losses back plus one unit you simply
need to double your bet each time:

e.g. If you lost four consecutive spins and then won on the fifth spin the
outcome of each spin would be (-1) + (-2) + (-4) + (-8) + (+16) = +1

You would have placed a total of 31 units at the start of the fifth spin,
and when red hit on the fifth spin you would pick up 32 units.

Links

http://www.casino-help.com/systems/martingale.shtml http: / /roulette.casino.com /article.pl/aid=m

355

317 GT::MoneyManagement::OrderSizeLimit

Overview

This money management rule will keep an eye to the size of each order to
remain them below a fixed percentage of the portfolio value.

356

318 GT::MoneyManagement::Basic

Basic and dumb money management rules (ie no rules).

357

319 GT::MoneyManagement::Basic

Basic and dumb money management rules (ie no rules).

358

320 GT::MoneyManagement::PositionSizeLimit

Overview

This money management rule will keep an eye to the size of each position
to remain them below a fixed percentage of the portfolio value.

359

321 GT::MoneyManagement::RSI

Overview

This new money management technique utilize the Relative Strength In-
dex (RSI) in order to improve the performance of trend-following trading.
References

"A New Money Management Technique" - Takehide Matoba Article found
in http://www.erivativesreview.com

360

322 GT::MoneyManagement::STO

Overview

This new money management technique utilize the Stochastics (STO) in
order to improve the performance of trend-following trading.
References

"A New Money Management Technique" - Takehide Matoba Article found
in http://www.erivativesreview.com

361

323 GT::MoneyManagement::ShareMultiples

Overview

This money management rule will provide you a tool to buy/sell round
lots of shares (ie: multiples of 5, 10 or 50).

Parameters

By default, the first parameter is initialized to 10 and will provide share
multiples of 10 stocks. The second option is set up to zero and represent
the calculation method, but look at all options :

0 : round to the nearest multiple 1 : round to the lower multiple 2 : round
to the upper multiple

362

324 GT::MoneyManagement::VAR

Overview

This method uses market volatility and the concept of value at risk (VAR)
to help determine meaningful stop-loss prices and position limits for trad-
ing securities.

References

"Value At Risk And Technical Analysis" by Luis Ballesca-Loyo Technical
Analysis of Stocks and Commodities - August 1999

363

325 GT::OrderFactory

Create orders

An OrderFactory is used to create an order when a system has detected
an opportunity. This order will then be sent to the PortfolioManager by
the SystemManager.

$of->create_buy_order($calc, $i, $sys_manager, $pf_manager)

$of->create_sell_order($calc, $i, $sys_manager, $pf_manager)

Those functions are called by the systems to launch an order. The
SystemManager delegates this to an Order object. It will use the
Order object given by set_default order() or it will fallback to the
order suggested by the system.

364

326 GT::OrderFactory::ChannelBreakout

DESCRIPTION

This module is able to set up a generic channel breakout strategy based
on two generic limited price order, above and below current prices. Both
levels will be defined with an indicator.

365

327 GT::OrderFactory::StopOnExtreme

DESCRIPTION

Create an order that will be x% above or below current close prices.

366

328 GT::OrderFactory::MarketPrice

DESCRIPTION

Create an order at market price.

367

329 GT::OrderFactory::MaximumSlippage

DESCRIPTION

In a Maximum Slippage test, we rig the software so that buy orders always
suffer the maximum possible slippage : all buys occurs at the High of the
day, and similarly all sells occurs at the Low of the day.

This idea came from author Fred Gehm; it’s a torture test designed to see
whether a system is robust against slippage.

368

330 GT::OrderFactory::MinimumSlippage

DESCRIPTION

In a Minimum Slippage test, we rig the software so that buy orders always
catch the minimum possible slippage : all buys occurs at the Low of the
day, and similarly all sells occurs at the High of the day.

369

331 GT::OrderFactory::SignalClosingPrice

DESCRIPTION

This module will send virtual order at the closing price when a new signal
is given.

370

332 GT::OrderFactory::StopOnExtreme

DESCRIPTION

Create a "stop" order that will with the limit the high of the day (modulo
x%) for a long position and the low of the day for a short position.

371

333 GT::Portfolio

A portfolio

DESCRIPTION

A Portfolio is used to keep track of orders. It can calculate a performance
and give useful statistics about what you’ve done (average trade gain/loss,
percentage of winning/losing trades, max draw down, ...).

my $p = GT::Portfolio->new;
Create a portfolio object without any open positions and without any
pendings orders (ie an empty portfolio).

$p->add_order ($order)
Add $order to the list of pending orders.

$p->discard_order ($order)
Discard the order. Usually that means that it hasn’t been executed
or that it has been cancelled.

$p->new_position($code, $source, $date)

Create a new open position in the portfolio.

$p->apply_order_on_position($position, $order, $price, $date)

Add the given order to the position and modify the money available
in the portfolio accordingly.

$p->close_position($pos)
Move the position from the list of open positions to the historic list.
Update the cash with the marged gain.

$p->apply_pending_orders($calc, $i, $source, $pf_manager, [$cb 1)

Check the pending order for the value indicated by $calc, try to
execute them on the day $i. It restricts itself to the orders coming
from the indicated source. You can pass an optionnal callback for
managing specially the position opened callback. Not giving this
arg and leaving to its default value is usually ok.
$p->apply_pending_orders_on_position($position, $calc, $i)
Apply all pending orders on the position, this does include the stop.
$p->update_position_evaluation($position, $calc, $i)
Update the evaluation of the position with data of day $i.
$p->store_evaluation($date)

Store the cash level and the evaluation of the portfolio for the indi-
cated date.

372

$p->current_cash()
Returns the sum of cash available (may return a negative value if
"effet de levier" is used).
$p->current_evaluation()
Returns the evaluation of all the open positions in the portfolio.
$p->current_marged_gains()
Returns the sum of gains (or losses if the number is negative) made
with marged positions.
$p->current_marged_investment ()
Returns the sum of gains (or losses if the number is negative) made
with marged positions.

my($cash, $evaluation, $gains) = $p->get_historic_evaluation($date)

Return the historic information (cash and portfolio evaluation) about
the portfolio.

$p->has_historic_evaluation($date)
Returns true if an evaluation of the portfolio exists for the given date.

$p->1ist_pending_orders([$source])
Returns the list of orders that are pending and that have been sub-
mitted by the corresponding source. If source argument is missing
(or undef), returns all the pending orders.
$p->1ist_open_positions([$sourcel)
Returns the list of positions that are open and that have been sub-
mitted by the corresponding source. If source argument is missing
(or undef), returns all the open positions.
$p->get_position($code, $source)
Return the position (if any) corresponding to $code and $source.
This assumes that only one such position exists.
$p->1ist_history_positions($code, $source)
Return the list of historical positions corresponding to $code and
$source.
$p->set_initial_value()
Set the amount of money available initially on the portfolio.
$p->set_broker ($broker)
Defines which broker to use for the calculation of order commissions
and annual account charge.
$p->get_order_cost($order)
Apply all broker rules and return the amount ask by the broker for
the given order.

$p->real_global_analysis()

373

$p->real_analysis_by_code($code)
Analyzes the evolution of the portfolio. Either globally or for each
share individually.
Real analysis uses just the information provided. For a global anal-
ysis, it needs an initial value for the portfolio.

The informations calculated are :

- global gain/loss (sum & percentage)

- number of winning trades

- number of loosing trades

- average loss (percentage)

- average gain (percentage)

- max gain in single trade (percentage)

- max loss in single trade (percentage)

- max global gain

- max global loss

- max draw down (biggest cumulated loss after a new high) (percentage)

374

334 GT::Portfolio::Order

An order within the portfolio

DESCRIPTION

Internal structure

{
"order" => "B", # Buy/Sell
"type" => "L", # Limited|Stop|APD|ATP|TR
"code" => "13000",
"quantity" => 100,
"price" => "12.4", # Main price
"price2" => "12.6", # Second limit (if needed)
"source" => "Trend", # Trading system that opened the position
maybe '"manual"
"date" => "2001-07-01", # date of submission
"validity" => "2001-07-02", # valable until this day
"no_discard" => 1, # don’t remove the order automatically next day
"id" => 123 # id automatically assigned when added to
the portfolio
3
Functions

$0 = GT::Portfolio::0rder->new;
$0->set_sell_order()
$o->set_buy_order ()
$o->is_sell_order()
$o->is_buy_order()
$o->set_type($type)
$o->get_type()
Manage the type of the order. Valid types are :
M
Market price
L
Limit
S
Stop

APD
A plage de déclenchement (french market only)

375

TR
Tout ou rien (french market)

ATP
A tout prix (french market)

$o->set_type_{limited,market_price,stop,stop_limited}()

$o->is_type_{limited,market_price,stop,stop_limited} ()
Change/checks the type of the order.

$o->set_code($code)

$o0->code()
Set/get the symbol of the traded share.

$o->set_quantity($quantity)
$o->quantity()

Set/get the quantity of shares.
$o->set_price($price)
$o->price()
$o->set_second_price($price)
$o->second_price()

Set/get the prices on the order.
$0->set_source($source)
$o0->source()
$o0->set_submission_date($date)
$o->submissiont_date()
$o->set_indicative_stop($price)
$o->indicative_stop()
$o0->set_not_discardable()
$0->set_discardable()

$0->discardable()

A normal order has a validity of one period (ie one day usually). If
you want to place an order that should be kept until it’s executed (a
close on target for example) you need to modify the order by calling
this function on it.

$o->set_id($id)

$o->id ()

$o->set_attribute($key, [$value 1);
$o->has_attribute($key) ;
$o->attribute($key) ;

376

$o->delete_attribute($key) ;

An order can have "attributes" associated to keep track of its status
in various strategies. has_attribute returns only true if the attribute
exists (whatever its value is). attribute returns the attribute value if
it exists or undef otherwise.

$o->set_timeframe($timeframe)
$o->timeframe()
Set and return the timeframe associated to this order.
$o->set_marged ()
$o->set_not_marged()
$o->is_marged()

A marged order will not cost cash since the cash is "rented" until the
position is closed.

$0->is_executed($calc, $i)
Returns the price of execution if the order has been executed. Oth-
erwise returns 0.

377

335 GT::Portfolio::Position

An open position within a portfolio

DESCRIPTION

Internal structure

{
"long" => 1, # 1:Long O:Short
"code" => "13000",
"quantity" => 100,
"initial_quantity" => 100, # Quantity when position was opened
"open_price" => 12.4, # Price when position has been taken
"close_price" => 13.2, # Prices when position has been closed
"source" => "Trend", # Which trading system opened the position
"open_date" => "2001-07-01",
"close_date" => "2001-07-04",
"stop" => 12 # Stop is at 12

X

Functions

$p = GT::Portfolio::Position->new($code, $source, $date)
$p->set_long()

$p->set_short O

$p->is_long()

$p->is_short()

$p->set_code($code)

$p->code()
$p->set_quantity($quantity)
$p->quantity)
$p->set_initial_quantity($quantity)
$p->initial_quantity()
$p->set_open_price($price)
$p->open_price()
$p->set_close_price($price)
$p->close_price()
$p->set_source($source)

$p->source()

378

$p->set_open_date($date)
$p->open_date()
$p->set_close_date($date)
$p->close_date()
$p->set_id($id)
$p->1id O
$p->set_stop($price)
$p->update_stop($price)
$p->force_stop($price)
$p->stop()

set _stop and update_ stop modifies the stop level but it won’t let

you further the stop, you can only bring it nearer. If you want to
further the stop level use force stop.

$p->set_attribute($key, [$value 1);
$p->has_attribute($key) ;
$p->attribute($key) ;

$p->delete_attribute($key) ;

A position can have "attributes" associated to keep track of its status
in various strategies. has_attribute returns only true if the attribute
exists (whatever its value is). attribute returns the attribute value if
it exists or undef otherwise.

$p->set_timeframe ($timeframe)

$p->timeframe()
Set and return the timeframe associated to this position.

$p->set_marged ()
$p->set_not_marged ()
$p->is_marged ()

A marged position is constitued of shares that have been "rented"
(or bought with rented cash).

$p->apply_order($order, $price, $date)
Update the position with the corresponding order. The order has
been executed at the given date and at the given price.

$p->apply_pending_orders($calc, $i)
$p->add_order ($order)

Add a new pending order to the position.
$p->delete_order ($order)
$p->discard_order ($order)

379

$p->1ist_pending_orders()
Returns the list of pending orders on the position. Those orders have
not yet been executed.
$p->1list_detailed_orders()
Returns the list of detailed orders on the position. Those orders have
already been executed.
$p->is_open()
Returns true if the position is still open (ie if quantity != 0)
$p->set_intent_to_close()
Mark the position as being in the process of being closed. This will
let the system detect new opportunities as soon as possible.
$p->set_no_intent_to_close()
DeMark the position as being in the process of being closed. This
will let the system manage the position without knowing that some
orders have been placed to close the position (ie those orders may or
may not be executed).
$p->being_closed()
Returns true if the position is in the process of beeing closed.
$p->stats($portfolio, [$quantity_factor 1)
Calculate some statistics about the position.

380

336 GT::PortfolioManager

Manages a portfolio

DESCRIPTION

A PortfolioManager is an entity interacting between a Portfolio, a Trading
System, money management rules and trade filters.

When it comes to starting a new position (ie submitting an order to start
a position), the money management system comes in again to decide how
much to put on the trade.

Filters can be applied to accept/refuse trades proposed by the various
trading systems.

my $manager = GT::PortfolioManager->new($portfolio)

Create a new portfolio manager that implements a money manage-
ment strategy.

$manager->set_portfolio($portfolio)
Change the portfolio managed.

$manager->portfolio()
Returns the managed portfolio.

$order = $manager->buy_market_price($calc, $source)

$order = $manager->buy_limited_price($calc, $source, $price)
$order = $manager->buy_conditional($calc, $source, $price [, $price2])

$order = $manager->virtual_buy_at_open($calc, $source)
$order = $manager->virtual_buy_at_high($calc, $source)
$order = $manager->virtual_buy_at_low($calc, $source)
$order = $manager->virtual_buy_at_close($calc, $source)
$order = $manager->virtual_buy_at_signal($calc, $source)
$order = $manager->sell_market_price($calc, $source)

$order = $manager->sell_limited_price($calc, $source, $price)
$order = $manager->sell_conditional($calc, $source, $price [, $price2])

$order = $manager->virtual_sell_at_open($calc, $source)
$order = $manager->virtual_sell_at_high($calc, $source)

$order = $manager->virtual_sell_at_low($calc, $source)

381

$order = $manager->virtual_sell_at_close($calc, $source)

$order = $manager->virtual_sell_at_signal($calc, $source)
Those functions are used to create orders that may be modified and
submitted later.

$manager->set_order_partial($order, $ratio)

When you want to close a position, you may want to not close it fully.
With this function, you indicate how much of the initial position you
want to close.

$manager->discard_all_orders($calc, $source)

Discards all orders concerning this share and this source.
$manager->submit_order ($order, $i, $calc)

$manager->submit_order_in_position($position, $order, $i, $calc)

Submit the prepared order, either an order that will start a new
position or as an order that will modify an existing position.

$manager->add_money_management_rule($mm_rule)
$manager->delete_all_money_management_rule ()

$manager->default_money_management_rule($mm_rule)
Use a money management rule and remove all money management
rules currently used.
$manager->decide_quantity($order, $i, $calc)
Apply the various money management rules and decide the size of
the position.
$manager->finalize()
Finalize the setup of the manager. Calculate its name. You can get
its name afterward using $manager->get name.
$manager->get_name()
Return the name of the system.
$manager->setup_from_name ($name)

Setup the portfolio manager according to the name, it will create the
corresponding money management rules.

382

337 GT::Prices

A serie of prices

DESCRIPTION

GT::Prices stores all historic prices (open, high, low, close, volume, date).

my $p = GT::Prices->new()
Create an empty GT::Prices object.
$p->at (i)

Get the prices of the corresponding day. The indice can be obtained
from the dates by using $q->date("’YYYY-MM-DD’).

$p->at_date (’YYYY-MM-DD’)

Get the prices of the corresponding date.
$p->has_date(’YYYY-MM-DD’)

Return true if the object has prices for the corresponding date.

NOTE: If we test for an item that is larger than the last entry in the
prices array, then a new empty entry is created (and numerous error
messages as well).

$p->date(’YYYY-MM-DD’)

Get the indice corresponding to the date "YYYY-MM-DD’.
$p->add_prices_array([@price_arrayl])
$p->add_prices([$open, $high, $low, $close, $volume, $date])

$p->count ()
Get the number of prices availables.

$p->set_timeframe ($timeframe)

$p->timeframe()

Defines the time frame used for the prices. It’s one of the value
exported by GT::DateTime;

$p->sort ()
Sort the prices by date.

$p->reverse()
Reverse the prices list.

$p->convert_to_timeframe ($timeframe)

Creates a new Prices object using the new timeframe by merging the
required prices. You can only convert to a largest timeframe.

$p->find_nearest_following_date($date)

383

$p->find_nearest_preceding_date($date)
$p->find_nearest_date($date)

Find the nearest date available
$p->loadtxt("cotationsfile.txt")

Load the prices from the text file.
$p->savetxt("cotationsfile.txt")

Save the prices to the text file.
$p->dump;

Print the prices on the standard output.
$p->_binary_search($array_ref, $value)

Searches for the given $value in the $DATE position of the prices
array. This is an internal function, meant to be used only inside this
object.

384

338 GT::PricesTools

Utility functions for manipulating GT::Prices

DESCRIPTION
This package provide some simple functions to merge data from an existing

GT::Prices to a new GT::Prices object. It’s especially usefull to convert
daily data to a new time frame (ie: weekly/monthly).

Examples

convert_prices_in_a_new_time_frame($prices, $WEEKLY);
select_prices_by_period($prices, "2000-01-01", "2000-12-31");

multiply_prices_by_number($prices, 3.45);
divide_prices_by_number ($prices, 2.5);

reverse_prices($prices)

Ideas for later

adjust prices by the last rate of a currency
adjust prices by daily historical rate of a currency

385

339 GT::Registry

Generic registry functions

DESCRIPTION

This module is used by GT::Indicators, GT::Signals and GT::Systems to
keep a list of available objects. Those objects can be reused with different
datas.

GT: :Registry::get_registered_object($repository, $name)
Returns the object corresponding to $name if available. Otherwise
returns undef.

GT: :Registry::register_object($repository, $name, $object)
Register the object $object under the name $name. Replaces any
previous object registered under the same name.

GT: :Registry::get_or_register_object ($repository, $name, $object)

If an object corresponding to name $name is already registered then
returns this object. Otherwise register $object under the name $name.
This function is intented to be used by constructor of objects. Once
the constructor know the name of the object, it uses this function
to bless the object reference. It will check if an object with the
same name exists. In that case the registered object is used instead
of creating a new one. Otherwise the object in creation is blessed,
stored in the registry and returned.
Example:
sub new {

my $type = shift;

my $class = ref($type) || $type;

Get the name of the object

my $name = get_indicator_name(...);
my $self = {};

Check the registry and register it
$self = GT::Indicators::get_or_register_object($name, $self);

return $self;

}
GT: :Registry::manage_object ($repository, \ONAMES, $obj, $class, $args, $key)

Manage the creation of a new object. Build their names, stores
and/or retrieve the object from the database. Calls initialize for
a new object.

386

GT: :Registry::build_object_name($encoded, [Qargs], $key)
Returns the real $name of the object by substitution of #1, #2 (and
so on) by the real values of the parameters (given in the second
argument). "($key)" is appended at the end. It’s used to differentiate
similar objects but using a different input method for example (think
about indicators like "Average" working on prices or any other value).

Method for '"named" objects

get_name() or get_name($i)
get_nb_values()

387

340 GT::Report

Generate visual report of common objects

DESCRIPTION

This modules provides various functions to dump to GT::Report::OUT
(by default STDOUT) various objects in a nice formatted text.

GT: :Report::Portfolio($portfolio)
Prints the content of a portfolio in text format.
GT: :Report: :PortfolioHTML ($portfolio)
Prints the content of a portfolio in HTML format.
GT: :Report: :0OpenPositions ($portfolio, $detailed)
Display the list of open positions.
GT: :Report: :PortfolioAnalysis($analysis)
Pretty prints the results of the analysis of the portfolio.
GT: :Report::AnalysisList
Display the results of the backtest. Results per code and per system.
GT: :Report::SimplePortfolioAnalysis
Pretty prints only the main results of the analysis.
GT: :Report::CacheValues
Prints a summary of the content of the cache.

388

341 GT::Serializable

Add XML serialization functions to any object

DESCRIPTION

The functions available in GT::Serializable can add serialization support
to any simple perl object.

The various functions will serialize any hash, array or scalar value blessed
as an object.

Any object can be made serializable by adding GT::Serializable in @ISA :
our QISA = qw(GT::Serializable);

All hash items whose names start with an underscore won’t be stored in
the serialization process.

RESTRICTIONS

Any reference to something else than a hash, array or scalar value will be
ignored (including function and file descriptor).

HOOKS

Once an object is created from scratch based on a serialization dump,
$object->init _after _load() is called so that the object has a chance to
restore things that may have not been stored (such as reference to internal
functions).

FUTURE

We may define later other hooks that will let the module personalize the
name of elements used to store the object in the XML file.

FUNCTIONS

$self->as_string()

my $a = Module->create_from_string()
$self->store("file" | *FILE)

my $a = Module->create_from_file("file" | *#FILE)

389

342 GT::Signals

Base module for all signals

DESCRIPTION

Overview

Signals are objects that returns true/false for each quotation. This value
doesn’t have any other direct meaning (ie it’s not buy/sell). However those
results will probably be used by trading systems (in cunjunction with other
informations) to decide what to do (buy/sell/update a stop/nothing).

Detailed description

my $sig = GT::Signals::AnExample->new([Qargs])
Create a signal object with the appropriate parameters.
$sig->get_name or $sig->get_name($i)
Get the name of the signal. If the signal returns several values, you
can get the name corresponding to any value, you just have to precise
in the parameters the index of the value that you're interested in.
$sig->get_nb_values
Return the number of different values produced by this signal that
are available for use.
$sig->initialize()
This callback function is called at creating time. Since the "new"
function is inherited, you should do the initialization via this function.
$sig->detect($calc, $i)
Stores the value of the signal for the day $i.
$sig->detect_interval($calc, $first, $last)
Stores the value of the signal for all the days of the specified interval.

General exported functions
build_object_name($encoded, [Qargs], $key)

Generate the name of a signal based on its "encoded" name.
Functions to manage a repository of signals

GT::Signals::get_registered_object ($name) ;
GT::Signals::register_object($name, $object);
GT::Signals::get_or_register_object($name, $object);
GT::Signals: :manage_object (\GNAMES, $self, $class, $args, $key);

390

343 Above Generic Signal

Overview

This Generic Signal will be able to tell you when a specific indicator is
above a given value which could be an other indicator or a fixed limit.

EXAMPLE

You can check if the RSI is above 80 with this signal:

S:Generic:Above {I:RSI} 80

391

344 And Combination Signals

Overview

This Generic Signal will be give a positive signals only when all mentionned
signals also give positive signals.

EXAMPLE

You can use this signal to check if the closing prices is above 10 and below
15 :

S:Generic:And {S:Generic:Above {I:Prices CLOSE} 10} {S:Generic:Below {I:Prices CLOS

392

345 Below Generic Signal

Overview
This Generic Signal will be able to tell you when a specific indicator is

below something else which could be an other indicator, a limit or current
prices.

EXAMPLE

You can check if the Security is trading below the 200 day Exponential
Moving Average with this signal:

S:Generic:Below {I:Prices CLOSE} {I:EMA 200}

393

346 CrossOver Generic Signal

Overview

This Generic Signal will be able to tell you when a specific indicator is
crossing down an other one.

EXAMPLE

You can check test if the closing price has crossed under the 14 day EMA,
with this signal:

S:Generic:CrossOverDown {I:Prices CLOSE} {I:EMA 14}

394

347 CrossOver Generic Signal

Overview

This Generic Signal will be able to tell you when a specific indicator is
crossing down an other one.

EXAMPLE You can check test if the closing price has
crossed over the 14 day EMA, with this signal:

S:Generic:CrossOverUp {I:Prices CLOSE} {I:EMA 14}

395

348 Decrease Generic Signal

Overview

This Generic Signal will be able to tell you when a specific indicator is
decreasing from its previous level.

EXAMPLE

You can use this signal to determine if the securities closing price is de-
creasing

S:Generic:Decrease {I:Prices CLOSE}

396

349 Equal Generic Signal

Overview

This Generic Signal will be able to tell you when a specific indicator is
equal to something else which could be an other indicator, a limit or
current prices.

EXAMPLE

You can use this signal to test if the securities closing price equals 1.86

S:Generic:Equal {I:Prices CLOSE} 1.86

397

350 False

Always return false.

EXAMPLE

S:Generic:False

398

351 Increase Generic Signal

Overview

This Generic Signal will be able to tell you when a specific indicator is
increasing from its previous level.

EXAMPLE

You can use this signal to determine if the securities closing price is in-
creasing.

S:Generic:Increase {I:Prices CLOSE}

399

352 NewTimeFrame Generic Signal

Overview

This signal will tell you when you entered a new timeframe (e.g. the next
month /week /year).

400

353 Not Signal Negation

Overview

This Generic Signal will reverse the value of the signal parameter it re-
ceives.

EXAMPLE

You can use this signal to check if the closing prices are not decreasing:

S:Generic:Not {S:Generic:Decrease {I:Prices CLOSE}}

401

354 Or Combination Signals

Overview

This Generic Signal will be give a positive signals when anyone of the
mentionned signals also give a positive signal.

EXAMPLE

You can use this signal to check if the closing prices is below 10 or above
15 :

S:Generic:0r {S:Generic:Below {I:Prices CLOSE} 10} {S:Generic:Above {I:Prices CLOSI

402

355 GT::Signals::Generic::Repeated

Detect repetition of a given signal

DESCRIPTION

This generic Signal will give a positive signal when the mentionned signal
has been positive for the last X days (where X is the second parameter of
this signal with a default value of 2).

EXAMPLE

You can check if the RSI has been above 80 for the last 3 days with this
signal:

S:Generic:Repeated {S:Generic:Above {I:RSI} 80} 3

403

356 True

Always return true.

EXAMPLE

S:Generic:True

404

357 GT::Signals::Graphical::CandleSticks::BearishEngulfingLi

Overview

The Bearish Engulfing Line is a strongly bearish if it occurs after a signif-
icant up-trend (i.e., it acts as a reversal pattern). It occurs when a small
bullish (empty) line is engulfed by a large bearish (filled-in) line.

Engulfing Lines are one of the most important and powerful candle pat-
terns. To form the pattern, today’s range encloses or "engulfs" the prior
day’s range, thereby indicating great market strength in the direction of
today’s close.

From a psychological perspective, Engulfing Lines indicate that the mar-
ket opened in the same direction as the prior day, but then reversed senti-
ment to close strongly in the opposite direction, overcoming and reversing
yesterday’s assumption regarding value.

Construction

If yesterday closed lower, a Bullish Engulfing Line will form when today’s
open is below yesterday’s close abd today’s close is above yesterday’s open.
The Bearish Line is just the opposite, where a black body enckises a
previous white body.

Representation

I
##
#i#
[
[##
| #i#

#

Bearish Engulfing Line

Links

http://www.equis.com/free/taaz/candlesticks.html

405

358 GT::Signals::Graphical::CandleSticks::BearishHarami

Overview

The Bearish Harami signifies a decrease of momentum. It occurs when
a small bearish (filled-in) line occurs after a large bullish (empty) line in
such a way that close of the bullish line is above the open of the bearish
line and the open of the bullish line is lower than the close of the bearish
line.

The Bearish Harami is a mirror image of the Bullish Engulfing Line.

Construction

If yesterday closed higher, a Bearish Harami will form when today’s open
is below yesterday’s closed and today’s close is above yesterday’s open.

Representation

I

I

| #a##
| ###
I

I

Bearish Harami

References

1. More information about the bearish harami on Page 33 of the book
"Candlestick Charting Explained" by Gregory L. Morris. Morris says
that this pattern suggests a trend change.

2. Steve Nison also says that the Harami Patterns suggest a trend change.
This is on page 80 of his book "Japanese Candlesticks Charting Tech-
niques".

3. http://www.equis.com/Customer/Resources/ TAAZ/.

406

359 GT::Signals::Graphical::CandleSticks::BullishEngulfingLir

Overview

The Bullish Engulfing Line is a strongly bullish pattern if it occurs after
a significant downtrend (i.e., it acts as a reversal pattern). It occurs when
a small bearish (filled-in) line is engulfed by a large bullish (empty) line.

Engulfing Lines are one of the most important and powerful candle pat-
terns. To form the pattern, today’s range encloses or "engulfs" the prior
day’s range, thereby indicating great market strength in the direction of
today’s close.

From a psychological perspective, Engulfing Lines indicate that the mar-
ket opened in the same direction as the prior day, but then reversed senti-
ment to close strongly in the opposite direction, overcoming and reversing
yesterday’s assumption regarding value.

Construction

If yesterday closed lower, a Bullish Engulfing Line will form when today’s
open is below yesterday’s close abd today’s close is above yesterday’s open.
The Bearish Line is just the opposite, where a black body enckises a
previous white body.

Representation

Bullish Engulfing Line

Links

http://www.equis.com/free/taaz/candlesticks.html

407

360 GT::Signals::Graphical::CandleSticks::BullishHarami

Overview

The Bullish Harami signifies a decrease of momentum. It occurs when a
small bullish (empty) line occurs after a large bearish (filled) line in such
a way that close of the bullish line is above the open of the bearish line
and the open of the bullish line is lower than the close of the bearish line.

The Bullish Harami is a mirror image of the Bearish Engulfing Line.

Construction

If yesterday closed higher, a Bullish Harami will form when today’s open
is above yesterday’s close and today’s close is above yesterday’s open.

Representation

I
i
#H
| I
#a# | ___|
i |
i

Bullish Harami

Links

1. More information about the bullish harami on Page 33 of the book
"Candlestick Charting Explained" by Gregory L. Morris. Morris says
that this pattern suggests a trend change.

2. Steve Nison also says that the Harami Patterns suggest a trend change.
This is on page 80 of his book "Japanese Candlesticks Charting Tech-
niques".

3. http://www.equis.com/Customer/Resources/ TAAZ/.

408

361 GT::Signals::Graphical::CandleSticks::GravestoneDoji

Overview

The Gravestone Doji is a reversal pattern that signifies a turning point.
It occurs when the open, close, and low are the same, and the high is
significantly higher than the open, low, and closing prices.

Representation
I
I
I

79

Links

http://www.equis.com/free/taaz/candlesticks.html

409

362 GT::Signals::Graphical::CandleSticks::Hammer

Overview

The Hammer Pattern is formed by a short body at the top of a long trail.
Hammers must occur at the end of significant trends to have meaning.

Hammers indicate indecision in the direction of the trend. A black (solid)
hammer which occurs at the end of an uptrend is called a Hanging Man.
Thsi type of Hammer indicates the market’s propensity to sell off sharply.
However, one should wait for the next session to confirm the bearish mood
(i-e., for the market to open below the close of the hammer). On the other
hand, white (open) Hammers which occur at the end of downtrends show
strength for a reversal to the upside, since the bulls are clearly bucking
the downtrend to close near the open for the session.

Construction

A Hammer occurs when the high, open and close occur at roughly the
same price, but the low of the day is far below.

Representation
S _l_ I
I N HHE O HH#
-— - ___l [___| HHH
I I I I I I
I I I I I I
I I I I I I
48 52 80 84 32 36
Links

http://www.equis.com /free/taaz/candlesticks.html

410

363 GT::Signals::Graphical::CandelSticks::InvertedHammer

Overview

Inverted Hammers are just the opposite of Hammers (see GT::Signals::Graphical::CandleSticks:: Hamm
i.e., a small body occurs at the bottom of a long trail. Black Inverted Ham-

mers occuring at the end of uptrends are clearly bearish, since the markets

fails in its attempt to rally higher, closing near the open.

However, white Inverted Hammers at the end of downtrends are more sub-
tle, and it is important to establish the following day as bullish. It is likely
that a short-covering rally will ensue, thereby confirming the reversal.

Construction

An inverted Hammer is formed when the open, close and low occur at
approximately the same price, with a high extended significantly above
the three. The farther away the high is for the day, the more signifiant
the pattern in terms of forecasting a reversal.

Representation
I I I I
I I I I I I
I I _l_ _l_ I I
I I I I I I i HHH
-— - ___l [___| HHH HHH
I I I
79 78 95 94 47 46

411

364 GT::Signals::Indicators::RSIDown

Signal when we cross down a limit on the RSI. Limit is 70 by default.

412

365 GT::Signals::Indicators::RSIDown

Signal when we cross up a limit on the RSI. Limit is 30 by default.

413

366 GT::Signals::Advance

DESCRIPTION

The Advance Signal will be able to tell you if a security is advancing more
than x % or not from the previous period. Advance, Decline and Unchange
Signals are basics signals and will be your row materials for designing lots
of market indicators.

414

367 GT::Signals::Decline

DESCRIPTION

The Decline Signal will be able to tell you if a security is declining mor
thant x % or not from the previous period. Advance, Decline and Un-
change Signals are basics signals and will be your row materials for de-
signing lots of market indicators.

415

368 GT::Signals::GapDown

DESCRIPTION

Gaps form when opening price movements create a blank spot on the
chart. Gaps are especially significant when accompanied by an increase of
volume.

A down gap forms when a security opens below previous period’s low,
remains below the previous low for the entire period and close below it.

Down gaps can form on daily, weekly or monthly charts and are generally
considered bearish.

416

369 GT::Signals::GapUp

DESCRIPTION

Gaps form when opening price movements create a blank spot on the
chart. Gaps are especially significant when accompanied by an increase of
volume.

An up gap forms when a security opens above previous period’s high,
remains above the previous high for the entire period and close above it.

Up gaps can form on daily, weekly or monthly charts and are generally
considered bullish.

417

370 GT::Signals::Prices::InsidePrevious

The InsidePrevious signal gets triggered if a security’s high is lower than
or equal to the previous period’s high, and the low is higher than or equal
to previous period’s low.

418

371 GT::Signals::Unchange

DESCRIPTION

The Unchange Signal will be able to tell you if a security is unchange or
not from the previous period.

Advance, Decline and Unchange Signals are basics signals and will be your
row materials for designing lots of market indicators.

419

372 GT::Signals::Swing::Trend

420

373 GT::Signals::Swing:: TrendUpEnding

An up-trend is going on and a little candle is constated. The trend may
be ending ...

421

374 GT::Signals::MacdDift

422

375 GT::Signals::Trend::HilbertChannelBreakout

423

376 GT::Signals::Trend:: TTT

Trade The Trend !! Use Hilbert period to detect the start of a trend.

424

377 GT::Signals::Volatility::NR

DESCRIPTION

NR is for Narrowest Range. It is parametered with the period length to
look at for the size of ranges.

425

378 GT::SystemManager

Manages trading systems

DESCRIPTION

A SystemManager is an entity interacting between a PortfolioManager, a
Trading System (signals), TradeFilters, OrderFactory and CloseStrategy.

Filters can be applied to accept/refuse trades proposed by the trading
system.

A system manager is not completely defined until all desired objects have
been "linked" to it using all the add * and set * functions. When all
those calls have been made, you should call finalize to let the manager
know that you’ve finished setting it up. After that, the system manager
can be identified with an unique (and quite long) name.

Later you’ll be able to setup the same system manager by using setup from name($name).

my $sm = GT::SystemManager->new($system)

Create a new system manager used to control a trading system.
$sm->set_system($system)

Define the system that is managed.
$sm->system()

Return the system managed by this manager.
$manager->add_trade_filter()
$manager->delete_all_trade_filter()

Use a trade filter and remove all trade filters currently used.
$self->accept_trade($order, $i, $calc, $pf_manager)

Apply all the trade filters to the proposed tarde and return the result

(accepted or not).
$self->send_buy_order($calc, $i, $pf_manager)
$self->send_sell_order($calc, $i, $pf_manager)

Those functions are called by the systems to launch an order. The

SystemManager delegates this to an Order object. It will use the

Order object given by set_default order() or it will fallback to the

order suggested by the system.
$self->set_order_factory($order_factory)

Defines which OrderFactory object will be used to send the orders.
$self->add_position_manager($close_strategy)
$self->delete_all_position_manager()

Add a position manager to the chain of position manager. A position
manager is better known as "CloseStragegy".

426

$sm->manage_position($calc, $i, $position, $pf_manager)
Manages a open position with the current system.
$sm->position_opened($calc, $i, $position, $pf_manager)

Has to be called once a position has been opened and wants to be
managed by this system manager.

$sm->get_indicative_stop($calc, $i, $order, $pf_manager)

Get an indicative stop level for the position that will be opened by
this order.

$sm->apply_system($calc, $i, $pf_manager)
This function will use the generated signals to pass the order. It
delegates this responsibility to the PortfolioManager.

$sm->precalculate_interval ($calc, $i, $first, $last)

$sm->finalize()

Finalize the setup of the manager. Calculate its name. You can get
its name afterward using $sm->get name

$sm->get_name ()
Return the name of the system.

$sm->setup_from_name ($name)

Setup the system manager according to the name.
$sm->set_alias_name ($name)
$sm->alias_name
my $sm = GT::SystemManager::get_registered_object ($name)
Returns the system manager corresponding to this name.

427

379 GT::Systems -

DESCRIPTION

Trading systems are systems that decide what to buy and sell at which
prices and so on.

A system will propose buy/sell orders. The day after, those orders will be
either cancelled or confirmed. If the order is confirmed, then a position
is considered open. An open position will then be managed by a close
strategy.

$system->long_signal($calc, $i) —item $system->short_signal($calc,
$1)
The system can generate 2 signals (buy or sell). A signal is an intent
to buy or sell. Those functions should be overriden by the specific
system.
$system->set_long_signal ()
$system->set_short_signal()
Facility function to set which signal is used to generate buy/sell sig-
nal. They are meant to be used in initialize only if long signal and
short signal are not overriden.

$system->precalculate_all($calc) —item $system->precalculate_interval ($calc,
$first, $last)
If you run a system on a long period of time you may want to precal-
culate all the indicators in order to benefit of possible optimizations.
This is the role of those 2 functions.
$system->default_order_factory()

Return an object OrderFactory that can be used if no other objects
was to be used.

Functions to manage a repository of systems

GT: :Systems: :get_registered_object ($name) ;

GT::Systems: :register_object ($name, $object);

GT::Systems: :get_or_register_object($name, $object);

GT::Systems: :manage_object (\GNAMES, $object, $class, $args, $key);

GT::Systems: :Module->new($args)
Create a new Systems with the given arguments. $args is optional.

428

380 Trend following system

429

381 Trend following system 2

430

382 AlwaysInTheMarket Trading System

Overview

This system will generate every time it is called a long and a short signal.

Examples

To set up a Buy And Hold strategy : SY:AlwaysInTheMarket|CS:NeverClose| TF:LongOnly|TF:OneTr
To set up a Short And Hold strategy : SY:AlwaysInTheMarket|CS:NeverClose|TF:ShortOnly| TF:One’

Note

In which way is a BuyAndHold or a Short AndHold system usefull ?

The main purpose is to run the system on a list of securities, in order
to get the portfolio performance. Let’s try to catch indices performance
with just a few stocks and beat the market only with money-management
I Welcome to the world of portfolio selection and portfolio optimization.

431

383 Generic System module
a system runs on two signals: long and short

these terms imply buying shares when the long signal is triggered
and selling shares short when the short signal is triggered. in
either case a new position is thus opened (or maybe added to)

for the security that caused the signal.

a generic system description requires two signals, the first
must define the long signal, the second defines the short signal.

out on a limb here -- a system description can specify only
one long and one short signal

nb: the short signal will not necessarily close a position
opened by a prior long signal. open position management is
controlled by a close strategy.

according to GT::Systems a signal is acted upon in the following
day (timeframe). if a position is opened (long or short) closing
that position is controlled by a close strategy (CS). therefore,
most system descriptions will also include a close strategy
description.

system description can specify multiple close strategies

system description can specify multiple money management (MM)
strategies

how does OrderFactory (OF) fit in with system description?

384 Generic System Examples

SY:Generic \

{S:Generic:CrossOverUp {I:SMA 20 {I:Prices CLOSE}} {I:SMA 60 {I:Prices CLOSE}}}
{S:Generic:CrossOverDown {I:SMA 20 {I:Prices CLOSE}} {I:SMA 60 {I:Prices CLOSE}}}
| TF:OneTrade \

| CS:OppositeSignal

the CrossOverUp signal denotes the buy condition
the CrossOverDown signal denotes the sell condition

432

notice that the close strategy explicitly specifies that the short
signal is also used to close open positions, and conversely
short positions are closed with the long signal.

the trade filter (TF) (see perldoc ../GT/TradeFilters.pm) will limit
the number of open positions (either long or short) to one, however
it will allow a new open position and a closed postion in the same timeframe.

system descriptions can specify multiple trade filters

SY:Generic inherits new from GT::Systems::

433

385 Trend following system

434

386 Stochastic

435

387 Stochastic

436

388 Trend following system

437

389 Trend Following System (TFS)

438

390 Turtle Trading System (TTS)

Overview

The Turtle Trading System is a very simple and very easy to understand.
It’s an Asymetric Channel Breakout :

* Enter long above the highest high of the previous X days and exit with
a stop based on the lowest low of the Y previous days with Y < X

* Enter short below the lowest low of the previous W days and exit with
a stop based on the highest high of the Z previous days with Z < W

Parameters

Y = length of channel for longs W = length of channel for shorts =cut
sub new { my $type = shift; my $class = ref($type) || $type; my $args =
shift;

my $self = { "args" => defined($args) 7 $args : [55, 20] };

return manage_object (\GNAMES, $self, $class, $self->{’args’}, "");

sub initialize { my ($self) = @_;

$self->{’max’} = GT::Indicators::Generic::MaxInPeriod->new([$self->{’args’}[0].
$self->{’min’} = GT::Indicators::Generic::MinInPeriod->new([$self->{’args’}[1].

$self->add_indicator_dependency($self->{’min’}, 2);
$self->add_indicator_dependency($self->{’max’}, 2);
$self->add_prices_dependency($self->{’args’}[0] + 1);
$self->add_prices_dependency($self->{’args’}[1] + 1);

sub precalculate interval { my ($self, $calc, $first, $last) = @ ; $self-
>{’max’}->calculate_ _interval($calc, $first, $last); $self->{’min’}->calculate_interval($calc,
$first, $last);

return;

sub long_signal { my ($self, $calc, $i) = @_;

return 0 if (! $self->check_dependencies($calc, $i));

439

if (($calc->prices->at($i)->[$CLOSE] >
$calc->indicators->get($self->{’max’}->get_name, $i - 1)

)
{

return 1;
}
return 0O;

sub short _signal { my ($self, $calc, §i) = @ _;
return 0 if (! $self->check_dependencies($calc, $i));

if (($calc->prices->at($i)->[$CLOSE] <
$calc->indicators->get ($self->{’min’}->get_name, $i - 1)

)
{
return 1;
}
return 0O;
}
L

440

391 GT::Tools

Various helper functions

DESCRIPTION

This modules provides several helper functions that can be used in all
modules and scripts.

There are 5 groupings

e math — min, max, pi, sign

e generic — extract object number

e conf — resolve alias resolve object alias long name short name
e isin —isin_checksum isin_validate isin _create from local

e timeframe — get timeframe data parse date str find calculator
check dates

math

It provides mathematical functions, that can be imported with use GT::Tools
qw(:math) :

PIO)
Returns PI.
min(...)
Returns the minimum of all given arguments.

max(...)

Returns the maximum of all given arguments.

sign($value)
Returns 1 for a positive (or null) value, -1 for a negative value.
generic

It provides helper functions to manage arguments in "Generic" objects.
You can import those functions with use GT::Tools qw(:generic) :

extract_object_number (Qargs)

Returns the number associated to the first the object described by
the arguments.

441

conf

And a few other very-specific functions :

use GT::Tools qw(:conf) :

resolve_alias($alias)
Return the long name of the system as described in the configuration
file.

resolve_object_alias($alias, @param)

Return the complete description of the object designed by "alias".
@param is the array of parameters as returned by GT::ArgsTree::parse _args().

Object aliases can be defined in global files (as defined in the option
Path::Aliases::<object kind>), for each kind of object (e.g., Signals,
Indicators, etc.), or in user-specific files (~/.gt/aliases/ <object_kind>).

Such aliases are defined via the syntax <alias name> <definition>
For example MyMean { I:Generic:Eval (#1 + #2) /2 }

An object alias can also be defined in the option file with the syntax
Aliases::<object kind>::<alias name> <definition>

For example:
Aliases::Indicators::MyMean { I:Generic:Eval (#1 + #2) / 2 }

Then you can use this alias in any other place where you could have
used a standard indicator as argument. Here’s how you would refer-
ence it with custom parameters :

{ @I:MyMean 50 {I:RSI} }

If you don’t need any parameters then you can just say "@QI:MyMean".
my $1
my $s = short_name($long)

long_name ($short)

Most module names can be shortened with some standard abrevia-
tions. Those functions let you switch between the long and the short
version of the names. The recognized abreviations are :

e Analyzers:: = A:

o CloseStrategy:: = CS:

e Generic:: = G:

e Indicators:: = I:

e MoneyManagement:: — MM:

e OrderFactory:: = OF:

e Signals:: = S:

e Systems:: = SY:

e TradeFilters:: = TF:

442

isin
use GT::Tools qw(:isin) :

isin_checksum($code)
This computes the checksum of a given code. The whole ISIN is
returned.

isin_validate($isin)

Validate the ISIN and its checksum.

timeframe
use GT::Tools qw(:timeframe) :

GetTimeFrameData ($code, $timeframe, $db, $max_loaded_items)
Returns a prices and a calculator object with data for the required
$code in the specified $timeframe. Tt uses $db object to fetch the
data. If for instance, weekly data is requested, but only daily data is
available, the weekly data is calculated from the daily data.
Optionally, you can set the configuration file directive DB::timeframes__available
to specify which timeframes are available. For instance: DB::timeframes available
5min,hour,day
parse_date_str (\$date_string, \$err_msg)
Returns 1 if \$date_string is valid parsable date, zero (or null) oth-
erwise \$date string will be altered to be a gt compliant date string
on return \$err msg is optional

e input params must be references to the object

if called in void context with bad date value the internal error
handling will put error message text on stderr and die called

e date ref var may be altered to conform to std date-time format
e error string will contain details about bad date-time string
If the user has Date::Manip installed it allows the use of date strings
that can be parsed by Date::Manip in addition the to defacto stan-
dard date-time format accepted by GT (YYYY-MM-DD HH:MM:SS)
time part is optional
Date::Manip is not required, without it users cannot use short-cuts

to specify date strings. such short cuts include —start ’6 months ago’
—end ’today’

The date string checking includes verifying the date string format is
valid and the date is a valid date (and time if provided)

Errors will be displayed and the script will terminate.

443

Application usage examples: with Date::Manip installed

yA scan.pl --timeframe day --start ’6 months ago’ \
--end ’today’ market_file ’today’ system_file

without Date::Manip you will need to use:

% scan.pl --timeframe day --start 2007-04-24 \
--end 2007-10-24 market_file 2007-10-24 system_file

or

% scan.pl --timeframe week --start 2007-04-24
--end 2007-10-24 market_file 2007-10-24 system_file

Usage of parse date str in application script

use GT::Tools qw(:timeframe);
tag name to get &parse_date_str visibility

my $err_msg;
get date string from command line
my $date = shift;

my ($d_yr, $d_mn, $d_dy, $d_tm);
if (! parse_date_str(\$date, \$err_msg)) {
die "Error: $err_msg\n";
} else {
($d_yr, $d_mn, $d_dy, $d_tm) = split /[- 1/, $date;
}

find_calculator($code, $timeframe, $full, $start, $end, $nb_item, $max_loaded_item)

Find a calculator: Returns $calc (the calculator), as well as $first
and $last (indices used by the calculator).

The interval examined (bound by $first and $last) is computed as
follows (stop whenever $first and $last have been determined): 1. if
present, use —start (otherwise default $first to 2 years back) and —end
(otherwise default $last to last price) 2. use —nb-item (from first or
last, whichever has been determined), if present 3. use first or last
price, whichever has not yet been determined, if —full is present 4.
otherwise, use two years worth of data.

Note that the values given to —start and —end are relative to the
selected time frame (i.e., if timeframe is "day", these indicate a
date; if timeframe is "week", these indicate a week; etc.). Format
is "YYYY-MM-DD" for dates, "YYYY-WW" for weeks, "YYYY-
MM™" for months, and "YYYY" for years.

444

check_dates ($timeframe, $start, $end, $date)
Converts the given dates into the proper dates relative to the chosen
time frame, if necessary. For example, if a date 2000-02-01 is given
with —timeframe=week, this date is converted to 2000-05.
Verifies that the start date is before the end.
If a third date is given, verifies that this date is between the start
and end dates.

445

392 GT::TradeFilters

Filters to accept or refuse trades

DESCRIPTION

Trade filters are used to decide whether or not a trade is accepted. It
can for example refuse trade going against the current trend. You can use
several trade filters simultaneously.

$filter->accept_trade($order, $i, $calc, $portfolio)

$system->precalculate_all($calc)

$system->precalculate_interval($calc, $first, $last)

If you run a system on a long period of time you may want to precal-
culate all the indicators in order to benefit of possible optimizations.
This is the role of those 2 functions.

446

393 GT::TradeFilters::AcceptAll

Accept all trades

DESCRIPTION

TradeFilter accepting all trades.

447

394 GT::TradeFilters::AroonTrend

Allow only trades following the trend defined by Aroon

DESCRIPTION

This filter tries to limit the risks by refusing trades againts the market (ie
like buying in a bear market or selling in a bullish market).

448

395 GT::TradeFilters::FollowTrend

Allow only trades following the direction of an SMA

DESCRIPTION

This filter tries to limit the risks by refusing trades againts the market (ie
like buying in a bear market or selling in a bullish market).

The first parameter is the number of days used to calculate the SMA.

449

396 TradeFilters::Generic

Accept or refuse trades based on specific signals

DESCRIPTION

This tradefilter takes two signals as parameter. The first decides if a buy
order is allowed, the second one decides if a sell order is allowed. If you
don’t precise a parameter, the corresponding orders will be refused.

EXAMPLES

Allow buy orders only when SMA 20 is moving up and sell orders when
SMA 20 is decreasing :

TF:Generic {S:Generic:Increase {I:SMA 20}} {S:Generic:Decrease {I:SMA 203}}

450

397 GT::'TradeFilters::LongOnly

Only allow long trades

DESCRIPTION

This filter allows only long trades and reject short ones. This is especially
usefull for people who don’t want to short the market. Moreover, this
filter is a must to find if a system perform better as a long only system
than either a short only or a long and short trading system.

451

398 GT::TradeFilters::MaxOpenTrades

Refuse more than N trades

DESCRIPTION

This filter refuses a new trade if more than N positions are open. It will
however accept, it if it’s in the process of being closed.

452

399 GT::TradeFilters::OneTrade

Refuse simultaneous trades

DESCRIPTION

This filter refuses a new trade if a position is actually open. It will however
accept it if it’s in the process of being closed.

453

400 GT::TradeFilters::ShortOnly

Only allow short trades

DESCRIPTION

This filter allows only short trades and reject long ones. This filter is a
must to find if a system perform better as a short only system than either
a long only or a long and short trading system.

454

